Suppr超能文献

通过RNA测序进行转录组特征分析揭示补体成分参与噪声损伤的大鼠耳蜗。

Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae.

作者信息

Patel M, Hu Z, Bard J, Jamison J, Cai Q, Hu B H

机构信息

Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.

Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, 701 Ellicott Street, Buffalo, NY 14260, USA; Department of Biostatistics, State University of New York at Buffalo, 701 Ellicott Street, Buffalo, NY 14260, USA; Department of Ophthalmology and Department of Medicine, State University of New York at Buffalo, 701 Ellicott Street, Buffalo, NY 14260, USA.

出版信息

Neuroscience. 2013 Sep 17;248:1-16. doi: 10.1016/j.neuroscience.2013.05.038. Epub 2013 May 30.

Abstract

Acoustic trauma, a leading cause of sensorineural hearing loss in adults, induces a complex degenerative process in the cochlea. Although previous investigations have identified multiple stress pathways, a comprehensive analysis of cochlear responses to acoustic injury is still lacking. In the current study, we used the next-generation RNA-sequencing (RNA-Seq) technique to sequence the whole transcriptome of the normal and noise-traumatized cochlear sensory epithelia (CSE). CSE tissues were collected from rat inner ears 1d after the rats were exposed to a 120-dB (sound pressure level) noise for 2 h. The RNA-Seq generated over 176 million sequence reads for the normal CSE and over 164 million reads for the noise-traumatized CSE. Alignment of these sequences with the rat Rn4 genome revealed the expression of over 17,000 gene transcripts in the CSE, over 2000 of which were exclusively expressed in either the normal or noise-traumatized CSE. Seventy-eight gene transcripts were differentially expressed (70 upregulated and 8 downregulated) after acoustic trauma. Many of the differentially expressed genes are related to the innate immune system. Further expression analyses using quantitative real time PCR confirmed the constitutive expression of multiple complement genes in the normal organ of Corti and the changes in the expression levels of the complement factor I (Cfi) and complement component 1, s subcomponent (C1s) after acoustic trauma. Moreover, protein expression analysis revealed strong expression of Cfi and C1s proteins in the organ of Corti. Importantly, these proteins exhibited expression changes following acoustic trauma. Collectively, the results of the current investigation suggest the involvement of the complement components in cochlear responses to acoustic trauma.

摘要

声创伤是成人感音神经性听力损失的主要原因,可在耳蜗中引发复杂的退行性过程。尽管先前的研究已经确定了多种应激途径,但仍缺乏对耳蜗对声损伤反应的全面分析。在本研究中,我们使用下一代RNA测序(RNA-Seq)技术对正常和噪声损伤的耳蜗感觉上皮(CSE)的整个转录组进行测序。在大鼠暴露于120分贝(声压级)噪声2小时后1天,从大鼠内耳收集CSE组织。RNA-Seq对正常CSE产生了超过1.76亿个序列读数,对噪声损伤的CSE产生了超过1.64亿个读数。将这些序列与大鼠Rn4基因组比对,揭示了CSE中超过17000个基因转录本的表达,其中超过2000个仅在正常或噪声损伤的CSE中表达。声创伤后,78个基因转录本差异表达(70个上调,8个下调)。许多差异表达基因与先天免疫系统有关。使用定量实时PCR进行的进一步表达分析证实了正常柯蒂器中多种补体基因的组成性表达以及声创伤后补体因子I(Cfi)和补体成分1 s亚成分(C1s)表达水平的变化。此外,蛋白质表达分析显示Cfi和C1s蛋白在柯蒂器中强烈表达。重要的是,这些蛋白质在声创伤后表现出表达变化。总体而言,本研究结果表明补体成分参与了耳蜗对声创伤的反应。

相似文献

1
Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae.
Neuroscience. 2013 Sep 17;248:1-16. doi: 10.1016/j.neuroscience.2013.05.038. Epub 2013 May 30.
3
Transcriptional changes in adhesion-related genes are site-specific during noise-induced cochlear pathogenesis.
Neurobiol Dis. 2012 Feb;45(2):723-32. doi: 10.1016/j.nbd.2011.10.018. Epub 2011 Oct 25.
6
The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma.
PLoS One. 2013;8(3):e58471. doi: 10.1371/journal.pone.0058471. Epub 2013 Mar 5.
9
Identification of new altered genes in rat cochleae with noise-induced hearing loss.
Gene. 2012 May 15;499(2):318-22. doi: 10.1016/j.gene.2012.02.042. Epub 2012 Mar 2.
10
Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling.
Noise Health. 2014 Nov-Dec;16(73):400-9. doi: 10.4103/1463-1741.144418.

引用本文的文献

1
Comparative analysis of the liver transcriptome in the red-eared slider (Trachemys scripta elegans) post exposure to noise.
PLoS One. 2024 Aug 1;19(8):e0305858. doi: 10.1371/journal.pone.0305858. eCollection 2024.
2
Transcriptional response to mild therapeutic hypothermia in noise-induced cochlear injury.
Front Neurosci. 2024 Jan 17;17:1296475. doi: 10.3389/fnins.2023.1296475. eCollection 2023.
3
Macrophage-related immune responses in inner ear: a potential therapeutic target for sensorineural hearing loss.
Front Neurosci. 2024 Jan 11;17:1339134. doi: 10.3389/fnins.2023.1339134. eCollection 2023.
4
Heterogeneity in macrophages along the cochlear spiral in mice: insights from SEM and functional analyses.
Front Cell Neurosci. 2023 Aug 25;17:1222074. doi: 10.3389/fncel.2023.1222074. eCollection 2023.
5
Complement factor B is essential for the proper function of the peripheral auditory system.
Front Neurol. 2023 Jul 25;14:1214408. doi: 10.3389/fneur.2023.1214408. eCollection 2023.
6
Downregulation of GJB2 and SLC26A4 genes induced by noise exposure is associated with cochlear damage.
Mol Biol Rep. 2022 Aug;49(8):7219-7229. doi: 10.1007/s11033-022-07291-7. Epub 2022 Jul 9.
7
The Genomics of Auditory Function and Disease.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:275-299. doi: 10.1146/annurev-genom-121321-094136. Epub 2022 Jun 6.
8
Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways.
Front Cell Neurosci. 2021 Nov 23;15:656930. doi: 10.3389/fncel.2021.656930. eCollection 2021.
9
Cochlear Immune Response in Presbyacusis: a Focus on Dysregulation of Macrophage Activity.
J Assoc Res Otolaryngol. 2022 Feb;23(1):1-16. doi: 10.1007/s10162-021-00819-x. Epub 2021 Oct 12.
10
Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss.
Stem Cells Transl Med. 2021 Feb;10(2):164-180. doi: 10.1002/sctm.20-0026. Epub 2020 Oct 9.

本文引用的文献

2
Library preparation and data analysis packages for rapid genome sequencing.
Methods Mol Biol. 2012;944:1-22. doi: 10.1007/978-1-62703-122-6_1.
3
Intragraft transcriptome level of CXCL9 as biomarker of acute cellular rejection after liver transplantation.
J Surg Res. 2012 Dec;178(2):1003-14. doi: 10.1016/j.jss.2012.07.016. Epub 2012 Jul 26.
4
Guilty molecules, guilty minds? The conflicting roles of the innate immune response to traumatic brain injury.
Mediators Inflamm. 2012;2012:356494. doi: 10.1155/2012/356494. Epub 2012 Jun 4.
5
Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome.
Age (Dordr). 2013 Jun;35(3):763-76. doi: 10.1007/s11357-012-9410-1. Epub 2012 May 4.
7
Identification of new altered genes in rat cochleae with noise-induced hearing loss.
Gene. 2012 May 15;499(2):318-22. doi: 10.1016/j.gene.2012.02.042. Epub 2012 Mar 2.
8
Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics. 2012 Apr 15;28(8):1086-92. doi: 10.1093/bioinformatics/bts094. Epub 2012 Feb 24.
9
Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury.
J Leukoc Biol. 2012 Jul;92(1):75-82. doi: 10.1189/jlb.1011530. Epub 2012 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验