Suppr超能文献

突变 IDH1 通过其动力学机制增强 2-羟戊二酸的产生。

Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism.

机构信息

Departments of Biological Reagents and Assay Development, Cancer Epigenetics, and Computational and Structural Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA.

出版信息

Biochemistry. 2013 Jul 2;52(26):4563-77. doi: 10.1021/bi400514k. Epub 2013 Jun 21.

Abstract

The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme.

摘要

人源细胞质酶异柠檬酸脱氢酶 1(IDH1)可逆地将异柠檬酸转化为α-酮戊二酸(αKG)。IDH1 中的癌相关体细胞突变导致正常功能丧失,但获得了新的或新功能的能力,可将αKG 转化为致癌代谢物 2-羟基戊二酸(2HG)。为了更好地理解这一现象的基础,我们对野生型 IDH1 以及已知的产生 2HG 的临床 R132H 和 G97D 突变体以及机制性 Y139D 和(新描述的)G97N 突变体进行了详细的动力学研究。在正常反应(αKG 到异柠檬酸)的还原方向上,终产物抑制研究表明,野生型 IDH1 遵循随机顺序机制,类似于先前关于相关哺乳动物 IDH 酶的报道。然而,类似的实验研究 IDH1 突变体的还原新功能反应(αKG 到 2HG)更符合有序顺序机制,其中 NADPH 在 αKG 之前结合。这一结果通过初级动力学同位素效应得到进一步证实,用 αKG 饱和大大降低了观察到的对(D)(V/K)NADPH 的同位素效应。对于突变 IDH1 酶,机制的变化与作为底物的αKG 的使用效率降低以及作为底物的 NADPH 的使用效率提高一致。我们提出,这些动力学变化的总和使突变 IDH1 酶能够将αKG 直接还原捕获到 2HG 中,而不是像野生型酶那样允许其与二氧化碳反应形成异柠檬酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验