Suppr超能文献

通过甲虫前飞时的翅膀柔韧性和鞘翅-后翅相互作用来提高空气动力学性能。

Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

机构信息

Korea Institute of Ocean Science and Technology, PO Box 29, Ansan 425-600, Korea.

出版信息

J R Soc Interface. 2013 Jun 5;10(85):20130312. doi: 10.1098/rsif.2013.0312. Print 2013 Aug 6.

Abstract

In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight.

摘要

在这项工作中,通过使用测量的翅膀运动学的三维计算流体动力学(CFD)模拟,探索了甲虫翅膀在自由前飞中的空气动力学性能。从 CFD 结果可以看出,当确定空气动力学性能时,扭转和弯度变化(代表翅膀的柔韧性)是最重要的。扭转机翼显著增加了平均升力,弯度变化增强了平均推力,而所需的功率低于两者都不考虑的情况。因此,在刚性、扭转和柔性模型之间的功率经济性比较中,柔性模型表现出最好的性能。当将机翼相互作用的积极影响加入到机翼柔韧性的影响中时,我们发现鞘翅产生了足够的升力来支撑其重量,并且模拟产生的总升力(48.4mN)超过了甲虫在向前飞行时的重力(47.5mN)。

相似文献

1
Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
J R Soc Interface. 2013 Jun 5;10(85):20130312. doi: 10.1098/rsif.2013.0312. Print 2013 Aug 6.
2
Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.
3
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
PLoS One. 2013;8(1):e53060. doi: 10.1371/journal.pone.0053060. Epub 2013 Jan 16.
4
Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.
J R Soc Interface. 2012 Oct 7;9(75):2745-8. doi: 10.1098/rsif.2012.0053. Epub 2012 May 16.
5
The impact of dragonfly wing deformations on aerodynamic performance during forward flight.
Bioinspir Biomim. 2020 Feb 7;15(2):026005. doi: 10.1088/1748-3190/ab597e.
6
Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti.
IET Nanobiotechnol. 2022 Sep;16(7-8):273-283. doi: 10.1049/nbt2.12095. Epub 2022 Aug 12.
7
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
8
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Proc Biol Sci. 2012 Feb 22;279(1729):722-31. doi: 10.1098/rspb.2011.1023. Epub 2011 Aug 10.
10
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Bioinspir Biomim. 2017 May 17;12(3):036012. doi: 10.1088/1748-3190/aa6c79.

引用本文的文献

1
Passive wing deployment and retraction in beetles and flapping microrobots.
Nature. 2024 Aug;632(8027):1067-1072. doi: 10.1038/s41586-024-07755-9. Epub 2024 Jul 31.
2
Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.
3
Clap-and-Fling Mechanism of Climbing-Flight Coccinella Septempunctata.
Biomimetics (Basel). 2024 May 9;9(5):282. doi: 10.3390/biomimetics9050282.
4
The spatiotemporal richness of hummingbird wing deformations.
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.246223. Epub 2024 May 21.
6
Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti).
PLoS One. 2019 Jun 25;14(6):e0218672. doi: 10.1371/journal.pone.0218672. eCollection 2019.
7
A balance between aerodynamic and olfactory performance during flight in Drosophila.
Nat Commun. 2018 Aug 10;9(1):3215. doi: 10.1038/s41467-018-05708-1.
9
Elytra reduction may affect the evolution of beetle hind wings.
Zoomorphology. 2018;137(1):131-138. doi: 10.1007/s00435-017-0388-1. Epub 2017 Nov 18.
10
Quantifying the dynamic wing morphing of hovering hummingbird.
R Soc Open Sci. 2017 Sep 20;4(9):170307. doi: 10.1098/rsos.170307. eCollection 2017 Sep.

本文引用的文献

1
Double rotation of the opening (closing) elytra in beetles (Coleoptera).
J Insect Physiol. 2012 Jan;58(1):24-34. doi: 10.1016/j.jinsphys.2011.09.010. Epub 2011 Sep 21.
2
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Proc Biol Sci. 2012 Feb 22;279(1729):722-31. doi: 10.1098/rspb.2011.1023. Epub 2011 Aug 10.
4
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
5
Aerodynamic effects of flexibility in flapping wings.
J R Soc Interface. 2010 Mar 6;7(44):485-97. doi: 10.1098/rsif.2009.0200. Epub 2009 Aug 19.
6
Deformable wing kinematics in free-flying hoverflies.
J R Soc Interface. 2010 Jan 6;7(42):131-42. doi: 10.1098/rsif.2009.0120. Epub 2009 May 15.
7
Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
J R Soc Interface. 2009 Sep 6;6(38):735-47. doi: 10.1098/rsif.2008.0435. Epub 2008 Dec 16.
8
Influence of flexibility on the aerodynamic performance of a hovering wing.
J Exp Biol. 2009 Jan;212(Pt 1):95-105. doi: 10.1242/jeb.016428.
9
Coupling between elytra of some beetles: mechanism, forces and effect of surface texture.
Sci China C Life Sci. 2008 Oct;51(10):894-901. doi: 10.1007/s11427-008-0124-7. Epub 2008 Sep 26.
10
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
J Exp Biol. 2008 Jan;211(Pt 2):239-57. doi: 10.1242/jeb.008649.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验