Suppr超能文献

从丁丙诺啡形成赤型氢丁丙诺啡依赖于 11β-羟类固醇脱氢酶 1。

Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1.

机构信息

Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.

出版信息

Drug Metab Dispos. 2013 Sep;41(9):1671-8. doi: 10.1124/dmd.113.052936. Epub 2013 Jun 26.

Abstract

Bupropion is widely used for treatment of depression and as a smoking-cessation drug. Despite more than 20 years of therapeutic use, its metabolism is not fully understood. While CYP2B6 is known to form hydroxybupropion, the enzyme(s) generating erythro- and threohydrobupropion have long remained unclear. Previous experiments using microsomal preparations and the nonspecific inhibitor glycyrrhetinic acid suggested a role for 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the formation of both erythro- and threohydrobupropion. 11β-HSD1 catalyzes the conversion of inactive glucocorticoids (cortisone, prednisone) to their active forms (cortisol, prednisolone). Moreover, it accepts several other substrates. Here, we used for the first time recombinant 11β-HSD1 to assess its role in the carbonyl reduction of bupropion. Furthermore, we applied human, rat, and mouse liver microsomes and a selective inhibitor to characterize species-specific differences and to estimate the relative contribution of 11β-HSD1 to bupropion metabolism. The results revealed 11β-HSD1 as the major enzyme responsible for threohydrobupropion formation. The reaction was stereoselective and no erythrohydrobupropion was formed. Human liver microsomes showed 10 and 80 times higher activity than rat and mouse liver microsomes, respectively. The formation of erythrohydrobupropion was not altered in experiments with microsomes from 11β-HSD1-deficient mice or upon incubation with 11β-HSD1 inhibitor, indicating the existence of another carbonyl reductase that generates erythrohydrobupropion. Molecular docking supported the experimental findings and suggested that 11β-HSD1 selectively converts R-bupropion to threohydrobupropion. Enzyme inhibition experiments suggested that exposure to bupropion is not likely to impair 11β-HSD1-dependent glucocorticoid activation but that pharmacological administration of cortisone or prednisone may inhibit 11β-HSD1-dependent bupropion metabolism.

摘要

安非他酮被广泛用于治疗抑郁症和戒烟。尽管已经使用了 20 多年,但它的代谢机制仍不完全清楚。虽然 CYP2B6 已知能形成羟基安非他酮,但产生赤型和苏型安非他酮的酶一直不清楚。以前使用微粒体制剂和非特异性抑制剂甘草酸的实验表明,11β-羟甾类脱氢酶 1(11β-HSD1)在形成赤型和苏型安非他酮中起作用。11β-HSD1 催化将无活性的糖皮质激素(可的松、泼尼松)转化为其活性形式(皮质醇、泼尼松龙)。此外,它还接受其他几种底物。在这里,我们首次使用重组 11β-HSD1 来评估其在安非他酮羰基还原中的作用。此外,我们应用人、大鼠和小鼠肝微粒体和选择性抑制剂来描述种属特异性差异,并估计 11β-HSD1 对安非他酮代谢的相对贡献。结果表明,11β-HSD1 是产生苏型安非他酮的主要酶。该反应具有立体选择性,没有形成赤型安非他酮。人肝微粒体的活性比大鼠和小鼠肝微粒体分别高 10 倍和 80 倍。在缺乏 11β-HSD1 的小鼠肝微粒体或用 11β-HSD1 抑制剂孵育的实验中,赤型安非他酮的形成没有改变,这表明存在另一种产生赤型安非他酮的羰基还原酶。分子对接支持了实验结果,并表明 11β-HSD1 选择性地将 R-安非他酮转化为苏型安非他酮。酶抑制实验表明,暴露于安非他酮不太可能损害 11β-HSD1 依赖性糖皮质激素激活,但皮质醇或泼尼松龙的药理学给药可能抑制 11β-HSD1 依赖性安非他酮代谢。

相似文献

1
Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1.
Drug Metab Dispos. 2013 Sep;41(9):1671-8. doi: 10.1124/dmd.113.052936. Epub 2013 Jun 26.
2
Carbonyl reduction of triadimefon by human and rodent 11β-hydroxysteroid dehydrogenase 1.
Biochem Pharmacol. 2013 May 1;85(9):1370-8. doi: 10.1016/j.bcp.2013.02.014. Epub 2013 Feb 16.
3
Metabolism of bupropion by carbonyl reductases in liver and intestine.
Drug Metab Dispos. 2015 Jul;43(7):1019-27. doi: 10.1124/dmd.115.063107. Epub 2015 Apr 22.
6
Carbonyl reduction of bupropion in human liver.
Xenobiotica. 2012 Jun;42(6):550-61. doi: 10.3109/00498254.2011.643416. Epub 2012 Feb 20.
7
Impaired oxidoreduction by 11β-hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid.
J Lipid Res. 2013 Oct;54(10):2874-83. doi: 10.1194/jlr.M042499. Epub 2013 Aug 9.
8
Deeper insight into the reducing biotransformation of bupropion in the human liver.
Drug Metab Pharmacokinet. 2014;29(2):177-84. doi: 10.2133/dmpk.dmpk-13-rg-051. Epub 2013 Oct 1.
10
Comparative enzymology of 11beta-hydroxysteroid dehydrogenase type 1 from six species.
J Mol Endocrinol. 2005 Aug;35(1):89-101. doi: 10.1677/jme.1.01736.

引用本文的文献

1
Pharmacogenetic Influence on Stereoselective Steady-State Disposition of Bupropion.
Drug Metab Dispos. 2024 Apr 16;52(5):455-466. doi: 10.1124/dmd.124.001697.
2
.
J Pharmacol Exp Ther. 2022 Jul 7;382(3):313-26. doi: 10.1124/jpet.122.001277.
3
Stereoselective Metabolism of Bupropion to Active Metabolites in Cellular Fractions of Human Liver and Intestine.
Drug Metab Dispos. 2023 Jan;51(1):54-66. doi: 10.1124/dmd.122.000867. Epub 2022 May 5.
4
Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines.
Drug Metab Lett. 2019;13(1):25-36. doi: 10.2174/1872312813666181129101507.
5
Comparison of In Vitro Stereoselective Metabolism of Bupropion in Human, Monkey, Rat, and Mouse Liver Microsomes.
Eur J Drug Metab Pharmacokinet. 2019 Apr;44(2):261-274. doi: 10.1007/s13318-018-0516-4.
6
Identification of non-reported bupropion metabolites in human plasma.
Biopharm Drug Dispos. 2016 Dec;37(9):550-560. doi: 10.1002/bdd.2046.
7
Stereoselective Metabolism of Bupropion to OH-bupropion, Threohydrobupropion, Erythrohydrobupropion, and 4'-OH-bupropion in vitro.
Drug Metab Dispos. 2016 Oct;44(10):1709-19. doi: 10.1124/dmd.116.072363. Epub 2016 Aug 5.
8
Development, validation and application of a comprehensive stereoselective LC/MS-MS assay for bupropion and oxidative, reductive, and glucuronide metabolites in human urine.
J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Aug 1;1027:239-53. doi: 10.1016/j.jchromb.2016.05.036. Epub 2016 May 24.
9
Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers.
J Pharmacol Exp Ther. 2016 Aug;358(2):230-8. doi: 10.1124/jpet.116.232876. Epub 2016 Jun 2.
10
Development and validation of a high-throughput stereoselective LC-MS/MS assay for bupropion, hydroxybupropion, erythrohydrobupropion, and threohydrobupropion in human plasma.
J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Apr 1;1017-1018:101-113. doi: 10.1016/j.jchromb.2016.02.032. Epub 2016 Feb 27.

本文引用的文献

1
11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects.
J Clin Invest. 2013 Jul;123(7):3051-60. doi: 10.1172/JCI64162. Epub 2013 Jun 3.
2
11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects.
Endocr Rev. 2013 Aug;34(4):525-55. doi: 10.1210/er.2012-1050. Epub 2013 Apr 23.
5
Carbonyl reduction of triadimefon by human and rodent 11β-hydroxysteroid dehydrogenase 1.
Biochem Pharmacol. 2013 May 1;85(9):1370-8. doi: 10.1016/j.bcp.2013.02.014. Epub 2013 Feb 16.
6
11β-HSD1 inhibition reduces atherosclerosis in mice by altering proinflammatory gene expression in the vasculature.
Physiol Genomics. 2013 Jan 7;45(1):47-57. doi: 10.1152/physiolgenomics.00109.2012. Epub 2012 Nov 20.
10
Carbonyl reduction of bupropion in human liver.
Xenobiotica. 2012 Jun;42(6):550-61. doi: 10.3109/00498254.2011.643416. Epub 2012 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验