Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
Exp Eye Res. 2013 Oct;115:106-12. doi: 10.1016/j.exer.2013.06.017. Epub 2013 Jun 24.
Accurate and reliable measurement of intraocular pressure (IOP) is crucial in the study of glaucoma using the mouse model. The purpose of this study was to determine the relationship between TonoLab-measured IOP and central corneal thickness (CCT) in mouse strains with single gene mutations of matricellular proteins. Wild-type (WT) and transgenic mouse strains with single gene mutations (KO) of thrombospondin-1 (TSP-1), thrombospondin-2 (TSP-2), osteopontin (OPN), hevin, and secreted protein acidic rich in cysteine (SPARC) were imaged at six weeks using optical coherence tomography (Stratus, Zeiss) to determine CCT. IOP was measured between 11am and 3pm using TonoLab, one week later. For all measurements, mice were anesthetized using intraperitoneal injection ketamine:xylazine. CCT and IOP were measured in 583 mice (TSP-1 n = 71 and 41, TSP-2 n = 60 and 32, OPN n = 81 and 50, hevin n = 59 and 76, SPARC n = 54 and 59, WT and KO, respectively). Mean CCT was 5-6% lower in three KO strains-TSP-1, OPN, and SPARC-compared to their corresponding WT (p = 1.55 × 10(-7), 1.63 × 10(-11), and 1.91 × 10(-7), respectively). The mean IOP was 8.3%, 6.6%, and 15.1% lower in three KO strains-TSP-1, TSP-2, and SPARC-compared to corresponding WT (p = 2.11 × 10(-5), 2.93 × 10(-3), and 3.76 × 10(-9), respectively. Linear regression of IOP versus CCT yielded no statistically significant within-strain correlations for TSP-1 (p = 0.12 and 0.073), TSP-2 (p = 0.473 and 0.92), OPN (p = 0.212 and 0.916), Hevin (p = 0.746 and 0.257), and SPARC (p = 0.080 and 0.056), reported as p-values considering a null hypothesis of zero slope (WT and KO, respectively). Neither C57-derived strains (TSP-1 and OPN) nor 129-derived strains (TSP-2, hevin, SPARC) demonstrated a correlation between mean IOP and mean CCT across different strains (p = 0.75 and p = 0.53, respectively). Taken together, these results indicate that CCT is not required to interpret TonoLab IOP readings in the mice when CCT varies 10% about the mean. This does not exclude the possibility of an IOP-CCT correlation for CCT values outside this range or for inter-strain comparisons where the mean CCT differs more than 10%.
准确可靠地测量眼内压 (IOP) 在使用小鼠模型研究青光眼时至关重要。本研究旨在确定在具有基质细胞蛋白单基因突变的小鼠品系中,TonoLab 测量的 IOP 与中央角膜厚度 (CCT) 之间的关系。在六周时,使用光学相干断层扫描 (Stratus,蔡司) 对野生型 (WT) 和具有单基因突变 (KO) 的转化小鼠品系(血栓素-1 (TSP-1)、血栓素-2 (TSP-2)、骨桥蛋白 (OPN)、hevin 和富含半胱氨酸的分泌蛋白酸性 (SPARC))进行成像,以确定 CCT。一周后,使用 TonoLab 在上午 11 点至下午 3 点之间测量 IOP。对于所有测量,使用腹腔注射氯胺酮:甲苯噻嗪麻醉小鼠。在 583 只小鼠中测量 CCT 和 IOP(TSP-1 n=71 和 41,TSP-2 n=60 和 32,OPN n=81 和 50,hevin n=59 和 76,SPARC n=54 和 59,WT 和 KO,分别)。与相应的 WT 相比,在三个 KO 品系(TSP-1、OPN 和 SPARC)中,CCT 平均低 5-6%(p=1.55×10(-7),1.63×10(-11),和 1.91×10(-7),分别)。与相应的 WT 相比,在三个 KO 品系(TSP-1、TSP-2 和 SPARC)中,IOP 平均低 8.3%、6.6%和 15.1%(p=2.11×10(-5),2.93×10(-3),和 3.76×10(-9),分别)。IOP 与 CCT 的线性回归在 TSP-1(p=0.12 和 0.073)、TSP-2(p=0.473 和 0.92)、OPN(p=0.212 和 0.916)、Hevin(p=0.746 和 0.257)和 SPARC(p=0.080 和 0.056)中均未显示出统计学上显著的品系内相关性,分别为 WT 和 KO 的 p 值(考虑零斜率的无效假设)。在不同的品系中,C57 衍生品系(TSP-1 和 OPN)和 129 衍生品系(TSP-2、hevin 和 SPARC)均未显示出平均 IOP 与平均 CCT 之间的相关性(p=0.75 和 p=0.53,分别)。综上所述,这些结果表明,当 CCT 变化 10%左右时,在 CCT 变化较大的情况下,不需要 CCT 来解释 TonoLab IOP 读数。这并不排除 CCT 值在该范围内或在 CCT 平均值相差超过 10%的品系之间比较时,IOP-CCT 相关性的可能性。