Autonomic and Neuroendocrinological Lab (ANF), Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr 74, 01307 Dresden, Germany.
J Neural Transm (Vienna). 2013 Sep;120 Suppl 1:S27-33. doi: 10.1007/s00702-013-1054-5. Epub 2013 Jun 28.
Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R-R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis--reviewed in this paper--was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R-R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.
生物节律描述了生物过程的时间变化,是复杂系统的一个特征。分析生物节律可以为不同疾病的病理生理学提供重要的见解,特别是在心血管医学领域。在自主神经系统领域,心率变异性(HRV)和压力反射敏感性(BRS)描述了血压和心率的重要波动,这些波动通常通过傅里叶变换进行分析。然而,这些参数是具有重叠节律结构的随机变量。作为时间独立变量的 R-R 间隔不是等距的。这就是为什么引入了三角回归谱(TRS)分析——本文对此进行了回顾,该分析考虑了此类时间序列的统计和节律特征。TRS 分析所需的数据段可以短至 20 秒,从而可以在较长时间内动态评估心率和血压的相互作用。除了 HRV 之外,TRS 还基于相干心率和血压振荡的线性回归分析来估计 BRS。一个额外的优点是,所有的振荡都是通过相同的(最大)R-R 间隔进行分析的,从而提供了大量的个体 BRS 值。这确保了 BRS 测定的高置信度,这与较短的记录时间一起,可能具有深远的临床意义。TRS 通过对心率和血压谱的动态评估,可以更精确地评估不同环境下的心血管调节,这已经在不同的临床研究中得到了证明。