Suppr超能文献

大肠杆菌 ATP 合酶定子内 b 亚基的个体相互作用。

Individual interactions of the b subunits within the stator of the Escherichia coli ATP synthase.

机构信息

Department of Microbiology, University of Osnabrück, 49069 Osnabrück, Germany.

出版信息

J Biol Chem. 2013 Aug 23;288(34):24465-79. doi: 10.1074/jbc.M113.465633. Epub 2013 Jul 11.

Abstract

FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.

摘要

FOF1 ATP 合酶是一种旋转纳米马达,它将质子穿过生物膜的转运与 ATP 的合成/水解相偶联。在催化过程中,由两个 b 亚基和大肠杆菌中的亚基 δ 组成的外周柄部抵消了由中心柄部旋转产生的扭矩。在这里,我们通过亚基间二硫键形成的使用单克隆抗体和最近邻分析来表征定子中 b 亚基的个体相互作用。抗体结合研究表明,两个 b 亚基之一的 C 末端区域主要参与亚基 δ 的结合,而另一个 b 亚基则可与抗体结合,而不影响 FOF1 的功能。筛选出适合 b 亚基与其他定子亚基(b-α、b-β、b-δ 和 b-a)之间形成二硫键的单独取代的半胱氨酸对,并将其彼此组合,以区分两个 b 亚基(即 bI 和 bII)。结果表明,b 二聚体位于非催化的 α/β 裂缝处,bI 靠近亚基 α,而 bII 靠近亚基 β。此外,bI 可以与亚基 δ 以及亚基 a 相连。形成的亚复合物包括 a-bI-α、bII-β、α-bI-bII-β 和 a-bI-δ。总之,获得的数据定义了两个 b 亚基在非催化界面的不同位置,并暗示每个 b 亚基在定子内产生稳定性方面具有不同的作用。我们建议 bI 在功能上与线粒体 ATP 合酶中存在的单个 b 亚基有关。

相似文献

1
Individual interactions of the b subunits within the stator of the Escherichia coli ATP synthase.
J Biol Chem. 2013 Aug 23;288(34):24465-79. doi: 10.1074/jbc.M113.465633. Epub 2013 Jul 11.
3
Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
J Biol Chem. 2004 Aug 20;279(34):35616-21. doi: 10.1074/jbc.M405012200. Epub 2004 Jun 15.
4
Subunit δ is the key player for assembly of the H(+)-translocating unit of Escherichia coli F(O)F1 ATP synthase.
J Biol Chem. 2013 Sep 6;288(36):25880-25894. doi: 10.1074/jbc.M113.484675. Epub 2013 Jul 17.
5
ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
Biochim Biophys Acta. 2016 Feb;1857(2):129-140. doi: 10.1016/j.bbabio.2015.11.005. Epub 2015 Nov 14.
6
7
The regulatory subunit ε in Escherichia coli FF-ATP synthase.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):775-788. doi: 10.1016/j.bbabio.2018.06.013. Epub 2018 Jun 20.
9
ATP synthase: subunit-subunit interactions in the stator stalk.
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1162-70. doi: 10.1016/j.bbabio.2006.04.007. Epub 2006 Apr 19.
10
Escherichia coli F1Fo-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits.
J Biol Chem. 2013 Sep 13;288(37):26441-7. doi: 10.1074/jbc.M113.503722. Epub 2013 Jul 26.

引用本文的文献

1
Hydrogen sulfide alleviates pericarp browning in lichi fruit by modulating energy and sugar metabolisms.
Front Plant Sci. 2024 Sep 3;15:1421203. doi: 10.3389/fpls.2024.1421203. eCollection 2024.
4
Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria.
EMBO J. 2022 Mar 1;41(5):e109800. doi: 10.15252/embj.2021109800. Epub 2022 Jan 17.
5
Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases.
Molecules. 2019 Jan 30;24(3):504. doi: 10.3390/molecules24030504.
6
The Peripheral Stalk of Rotary ATPases.
Front Physiol. 2018 Sep 4;9:1243. doi: 10.3389/fphys.2018.01243. eCollection 2018.
7
Analysis of Posttranslational Activation of Alternative Oxidase Isoforms.
Plant Physiol. 2017 Aug;174(4):2113-2127. doi: 10.1104/pp.17.00681. Epub 2017 Jun 8.
8
Sequence co-evolution gives 3D contacts and structures of protein complexes.
Elife. 2014 Sep 25;3:e03430. doi: 10.7554/eLife.03430.
9
Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.
PLoS Comput Biol. 2014 Sep 4;10(9):e1003821. doi: 10.1371/journal.pcbi.1003821. eCollection 2014 Sep.
10
Escherichia coli F1Fo-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits.
J Biol Chem. 2013 Sep 13;288(37):26441-7. doi: 10.1074/jbc.M113.503722. Epub 2013 Jul 26.

本文引用的文献

1
Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking.
FEBS Lett. 2013 Apr 2;587(7):892-7. doi: 10.1016/j.febslet.2013.02.012. Epub 2013 Feb 14.
2
Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex.
Structure. 2012 Nov 7;20(11):1881-92. doi: 10.1016/j.str.2012.08.020. Epub 2012 Sep 20.
3
The dynamic stator stalk of rotary ATPases.
Nat Commun. 2012 Feb 21;3:687. doi: 10.1038/ncomms1693.
4
Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
Nature. 2011 Dec 18;481(7380):214-8. doi: 10.1038/nature10699.
5
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.
Nat Struct Mol Biol. 2011 Jun;18(6):701-7. doi: 10.1038/nsmb.2058. Epub 2011 May 22.
6
Structural divergence of the rotary ATPases.
Q Rev Biophys. 2011 Aug;44(3):311-56. doi: 10.1017/S0033583510000338. Epub 2011 Mar 22.
8
The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase.
Nat Struct Mol Biol. 2010 Mar;17(3):373-8. doi: 10.1038/nsmb.1761. Epub 2010 Feb 21.
9
The structure of the membrane extrinsic region of bovine ATP synthase.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21597-601. doi: 10.1073/pnas.0910365106. Epub 2009 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验