Institute of Molecular Systems Biology, ETH Zurich, Wolfgang Pauli Str. 16, 8093, Zurich, Switzerland; PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland.
Biotechnol Bioeng. 2013 Dec;110(12):3164-76. doi: 10.1002/bit.25004. Epub 2013 Aug 12.
(13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media.
(13)C 代谢通量分析((13)C-MFA)已成为代谢工程和系统生物学的关键方法。在最常见的方法中,通量通过全局同位素平衡和对稳定(13)C 标记数据的迭代拟合来计算。这种方法需要封闭的碳平衡、持久的代谢稳态和在大量代谢物中检测(13)C 模式。这些限制主要将(13)C-MFA 的应用减少到在含有单一碳源的最小培养基中生长的研究良好的模型生物的中心碳代谢。在这里,我们介绍了非稳态(13)C 代谢通量比分析作为(13)C-MFA 的一种新方法,允许从超短(13)C 标记实验中估计局部、相对通量,而无需全局同位素平衡。该方法依赖于仅在汇聚通量节点附近的代谢物上获取非稳态(13)C 标记数据,以及使用常微分方程系统进行局部参数估计。我们开发了一种通用工作流程,该流程考虑了反应类型以及分子离子或片段的质谱数据的可用性,用于数据处理、建模、参数和误差估计。我们通过分析枯草芽孢杆菌中心代谢中三个汇聚通量的关键节点来证明该方法。我们得到的通量估计与从稳态实验获得的已发表结果一致,但将所需(13)C 标记实验的持续时间减少到不到一分钟。这些结果表明,我们的策略能够在极短的时间尺度上正式估计相对途径通量,而忽略细胞碳平衡。因此,该方法为在具有多个碳源和丰富培养基的动态系统中进行有针对性的(13)C-MFA 铺平了道路。