Suppr超能文献

在急性护理环境中使用亨德里希二世跌倒风险模型时跌倒发生率与跌倒风险评分之间的关系。

Relationship between occurrence of falls and fall-risk scores in an acute care setting using the Hendrich II fall risk model.

作者信息

Swartzell Kristen L, Fulton Janet S, Friesth Barbara Manz

机构信息

Ortholndy, Indianapolis, IN, USA.

出版信息

Medsurg Nurs. 2013 May-Jun;22(3):180-7.

Abstract

INTRODUCTION

Falls are a common clinical problem in the acute care setting, and fall-related injuries can include fractures, subdural hematomas, excessive bleeding, and even death (Hitcho et al., 2004). Several instruments are used clinically to estimate a patient's risk of falling. The STRATIFY (Oliver, Britton, Seed, Martin, & Hopper, 1997), the Morse Fall Scale (Morse, Black, Oberle, & Donahue, 1989), and the Hendrich II Fall Risk Model (Hendrich, Bender, & Nyhuis, 2003) are three instruments widely used in clinical practice by nurses. To be clinically useful, a fall risk assessment instrument should be easy to use with only a small number of items, perform consistently across target populations, and have evidence-based scoring and good inter-rater reliability. Oliver (2008), author of the STRATIFY tool, questioned the merits of any instrument used to assess fall risk in hospital inpatients in the absence of interventions to modify the risk factors. Too often, patient assessment and assignment of a score become required tasks and resulting data do not drive interventions.

PURPOSE

The purpose of this study was to explore the relationship between scores on the Hendrich II Fall Risk Model (HIIFRM) and fall occurrence as recorded in the medical record for patients diagnosed with diabetes mellitus, stroke, or heart failure in an acute care inpatient setting.

METHOD

To determine if a relationship existed between the occurrence of a fall and the HIIFRM score, the study used a random sample of patients who fell during admission and a matched control group of patients who did not fall. Fall cases were identified based on an admission Medical Severity-Diagnosis Related Group (MS-DRG) (Schmidt & Stegman, 2008) of stroke or secondary International Classification of Diseases (9th revision) (ICD-9) code (Hart, Stegman, & Ford, 2009) of heart failure or diabetes. Non-faller matched controls were selected at random from the same admission MS-DRG or secondary ICD-9 code as the fall case and matched for admission month/year.

DISCUSSION

This study found HIIFRM scores to be related significantly to falls in the sample of patients with diabetes, but not in the sample of patients with heart failure. Although the HIIFRM demonstrated statistically significant mean differences in scores between patients who fell and those who did not, clinically the instrument failed to identify 44% of patients who did fall as being at high risk for falling. Given the negative consequences associated with falling, not identifying 44% of high-risk patients can have significant clinical implications.

CONCLUSIONS

In this study, HIIFRM scores were related to falls among inpatients in an acute care hospital who had a diabetes diagnosis, but not a heart failure diagnosis. The differ ences between patient groups based on medical diagnoses suggest the instrument does not perform equally across patient groups, nursing skill levels, or clinical units. Though the findings are statistically significant, the clinical concemrn remains that a large percentage of patients who fell were scored as low risk using the HIIFRM instrument. At some level, every patient admitted to an acute care hospital is at risk for falls. Patients sick enough to be in the hospital have underlying disease, are receiving physiologically altering medications and treatments, and are likely experiencing pain, fatigue, anxiety, sleep disturbance, and other symptoms that interfere with cognitive and physical functioning. The key to preventing falls among hospitalized patients may lie in addressing how the hospital environment creates risk. Nurses should continue to improve the ability to assess fall risk and implement interventions that modify or eliminate risk when possible.

摘要

引言

在急性护理环境中,跌倒属于常见的临床问题,与跌倒相关的损伤可能包括骨折、硬膜下血肿、过度出血,甚至死亡(希乔等人,2004年)。临床上使用多种工具来评估患者的跌倒风险。STRATIFY(奥利弗、布里顿、西伊德、马丁和霍珀,1997年)、莫尔斯跌倒量表(莫尔斯、布莱克、奥伯勒和多纳休,1989年)以及亨德里克二世跌倒风险模型(亨德里克、本德和尼胡伊斯,2003年)是护士在临床实践中广泛使用的三种工具。为了在临床上发挥作用,跌倒风险评估工具应易于使用,项目数量少,在目标人群中表现一致,具有基于证据的评分且评分者间信度良好。STRATIFY工具的作者奥利弗(2008年)质疑在缺乏改变风险因素干预措施的情况下,用于评估医院住院患者跌倒风险的任何工具的优点。通常,患者评估和评分成为规定任务,而所得数据并未推动干预措施的实施。

目的

本研究的目的是探讨在急性护理住院环境中,亨德里克二世跌倒风险模型(HIIFRM)得分与诊断为糖尿病、中风或心力衰竭的患者病历中记录的跌倒发生情况之间的关系。

方法

为了确定跌倒发生情况与HIIFRM得分之间是否存在关系,该研究使用了入院期间跌倒患者的随机样本以及未跌倒患者的匹配对照组。跌倒病例根据中风的入院医疗严重程度 - 诊断相关组(MS - DRG)(施密特和施特格曼,2008年)或心力衰竭或糖尿病的国际疾病分类(第9版)(ICD - 9)二级代码(哈特、施特格曼和福特,2009年)来确定。非跌倒匹配对照组从与跌倒病例相同的入院MS - DRG或二级ICD - 9代码中随机选择,并按入院月份/年份进行匹配。

讨论

本研究发现,HIIFRM得分与糖尿病患者样本中的跌倒显著相关,但与心力衰竭患者样本中的跌倒无关。尽管HIIFRM在跌倒患者和未跌倒患者之间的得分显示出统计学上的显著差异,但在临床上该工具未能识别出44%实际跌倒的患者为高跌倒风险患者。鉴于与跌倒相关的负面后果,未识别出44% 的高风险患者可能具有重大的临床意义。

结论

在本研究中,HIIFRM得分与急性护理医院中诊断为糖尿病但非心力衰竭的住院患者的跌倒有关。基于医学诊断的患者群体之间的差异表明该工具在不同患者群体、护理技能水平或临床科室中的表现并不相同。尽管研究结果具有统计学显著性,但临床关注的问题仍然是,使用HIIFRM工具时,很大一部分跌倒患者被评为低风险。在某种程度上,入住急性护理医院的每位患者都有跌倒风险。病情严重到需要住院的患者有基础疾病,正在接受改变生理状态 的药物和治疗,并且可能正在经历疼痛、疲劳、焦虑、睡眠障碍以及其他干扰认知和身体功能的症状。预防住院患者跌倒的关键可能在于解决医院环境如何产生风险的问题。护士应继续提高评估跌倒风险的能力,并在可能的情况下实施改变或消除风险的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验