Suppr超能文献

T 盒 RNA 茎环 I 结构域与其同源 tRNA 复合物的共结晶结构

Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA.

机构信息

National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, Maryland 20892-8012, USA.

出版信息

Nature. 2013 Aug 15;500(7462):363-6. doi: 10.1038/nature12440. Epub 2013 Jul 28.

Abstract

In Gram-positive bacteria, T-box riboswitches regulate the expression of aminoacyl-tRNA synthetases and other proteins in response to fluctuating transfer RNA aminoacylation levels under various nutritional states. T-boxes reside in the 5'-untranslated regions of the messenger RNAs they regulate, and consist of two conserved domains. Stem I contains the specifier trinucleotide that base pairs with the anticodon of cognate tRNA. 3' to stem I is the antiterminator domain, which base pairs with the tRNA acceptor end and evaluates its aminoacylation state. Despite high phylogenetic conservation and widespread occurrence in pathogens, the structural basis of tRNA recognition by this riboswitch remains ill defined. Here we demonstrate that the ~100-nucleotide T-box stem I is necessary and sufficient for specific, high-affinity (dissociation constant (Kd) ~150 nM) tRNA binding, and report the structure of Oceanobacillus iheyensis glyQ stem I in complex with its cognate tRNA at 3.2 Å resolution. Stem I recognizes the overall architecture of tRNA in addition to its anticodon, something accomplished by large ribonucleoproteins such as the ribosome, or proteins such as aminoacyl-tRNA synthetases, but is unprecedented for a compact mRNA domain. The C-shaped stem I cradles the L-shaped tRNA, forming an extended (1,604 Å(2)) intermolecular interface. In addition to the specifier-anticodon interaction, two interdigitated T-loops near the apex of stem I stack on the tRNA elbow in a manner analogous to those of the J11/12-J12/11 motif of RNase P and the L1 stalk of the ribosomal E-site. Because these ribonucleoproteins and T-boxes are unrelated, this strategy to recognize a universal tRNA feature probably evolved convergently. Mutually induced fit of stem I and the tRNA exploiting the intrinsic flexibility of tRNA and its conserved post-transcriptional modifications results in high shape complementarity, which in addition to providing specificity and affinity, globally organizes the T-box to orchestrate tRNA-dependent transcription regulation.

摘要

在革兰氏阳性菌中,T 盒核糖体开关通过响应各种营养状态下转移 RNA 氨酰化水平的波动,调节氨酰-tRNA 合成酶和其他蛋白质的表达。T 盒位于它们调节的信使 RNA 的 5'非翻译区,由两个保守结构域组成。茎 I 包含与对应 tRNA 的反密码子配对的特异性三联体核苷酸。茎 I 的 3'端是终止子结构域,与 tRNA 受体末端配对,并评估其氨酰化状态。尽管具有高度的系统发育保守性并且在病原体中广泛存在,但这种核糖体开关识别 tRNA 的结构基础仍未得到明确定义。在这里,我们证明了100 个核苷酸的 T 盒茎 I 是特异性、高亲和力(解离常数(Kd)150 nM)tRNA 结合所必需且足够的,并报告了 3.2 Å 分辨率下海洋芽孢杆菌 glyQ 茎 I 与它的对应 tRNA 复合物的结构。茎 I 除了反密码子外,还识别 tRNA 的整体结构,这是核糖体等大型核糖核蛋白或氨酰-tRNA 合成酶等蛋白质完成的,但对于紧凑的 mRNA 结构域来说是前所未有的。C 形的茎 I 环抱 L 形 tRNA,形成一个扩展的(1604 Å(2))分子间界面。除了特异性-反密码子相互作用外,茎 I 顶点附近的两个互穿插的 T 环以类似于 RNase P 的 J11/12-J12/11 基序和核糖体 E 位的 L1 茎的方式堆积在 tRNA 的肘上。由于这些核糖核蛋白和 T 盒没有关系,因此这种识别通用 tRNA 特征的策略可能是通过趋同进化而来的。茎 I 和 tRNA 的相互诱导适合利用 tRNA 的固有灵活性及其保守的转录后修饰,导致高度的形状互补性,除了提供特异性和亲和力外,还全局组织 T 盒以协调 tRNA 依赖的转录调节。

相似文献

1
Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA.
Nature. 2013 Aug 15;500(7462):363-6. doi: 10.1038/nature12440. Epub 2013 Jul 28.
2
Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
Biochemistry. 2017 Jul 18;56(28):3549-3558. doi: 10.1021/acs.biochem.7b00284. Epub 2017 Jul 3.
3
An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
IUBMB Life. 2019 Aug;71(8):1167-1180. doi: 10.1002/iub.2098. Epub 2019 Jun 17.
4
Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
Mol Cell. 2014 Jul 3;55(1):148-55. doi: 10.1016/j.molcel.2014.05.017. Epub 2014 Jun 19.
5
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA.
J Mol Biol. 2011 Apr 22;408(1):99-117. doi: 10.1016/j.jmb.2011.02.014. Epub 2011 Feb 17.
6
Structure and mechanism of the T-box riboswitches.
Wiley Interdiscip Rev RNA. 2015 Jul-Aug;6(4):419-33. doi: 10.1002/wrna.1285. Epub 2015 May 8.
7
Sequence, structure, and stacking: specifics of tRNA anchoring to the T box riboswitch.
RNA Biol. 2013 Dec;10(12):1761-4. doi: 10.4161/rna.26996. Epub 2013 Nov 4.
9
Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME.
J Biol Chem. 2015 Sep 18;290(38):23336-47. doi: 10.1074/jbc.M115.673236. Epub 2015 Jul 30.
10
Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators.
Nat Struct Mol Biol. 2019 Dec;26(12):1106-1113. doi: 10.1038/s41594-019-0327-6. Epub 2019 Nov 18.

引用本文的文献

1
Structural insights into higher-order natural RNA-only multimers.
Nat Struct Mol Biol. 2025 Aug 6. doi: 10.1038/s41594-025-01650-1.
2
Targeting Gene Transcription Prevents Antibiotic Resistance.
Antibiotics (Basel). 2025 Mar 27;14(4):345. doi: 10.3390/antibiotics14040345.
3
Translational T-box riboswitches bind tRNA by modulating conformational flexibility.
Nat Commun. 2024 Aug 3;15(1):6592. doi: 10.1038/s41467-024-50885-x.
4
Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.
RNA. 2024 Sep 16;30(10):1328-1344. doi: 10.1261/rna.080071.124.
5
Structural basis of MALAT1 RNA maturation and mascRNA biogenesis.
Nat Struct Mol Biol. 2024 Nov;31(11):1655-1668. doi: 10.1038/s41594-024-01340-4. Epub 2024 Jul 2.
6
RNA cis-regulators are important for Streptococcus pneumoniae in vivo success.
PLoS Genet. 2024 Mar 5;20(3):e1011188. doi: 10.1371/journal.pgen.1011188. eCollection 2024 Mar.
7
Recognition of the tRNA structure: Everything everywhere but not all at once.
Cell Chem Biol. 2024 Jan 18;31(1):36-52. doi: 10.1016/j.chembiol.2023.12.008. Epub 2023 Dec 29.
9
Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble.
Nat Commun. 2023 Sep 6;14(1):5438. doi: 10.1038/s41467-023-41155-3.
10
Advances in chaperone-assisted RNA crystallography using synthetic antibodies.
BBA Adv. 2023 Aug 19;4:100101. doi: 10.1016/j.bbadva.2023.100101. eCollection 2023.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structure and function of the T-loop structural motif in noncoding RNAs.
Wiley Interdiscip Rev RNA. 2013 Sep-Oct;4(5):507-22. doi: 10.1002/wrna.1175. Epub 2013 Jun 10.
3
T box RNA decodes both the information content and geometry of tRNA to affect gene expression.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7240-5. doi: 10.1073/pnas.1222214110. Epub 2013 Apr 15.
4
A universal RNA structural motif docking the elbow of tRNA in the ribosome, RNAse P and T-box leaders.
Nucleic Acids Res. 2013 May 1;41(10):5494-502. doi: 10.1093/nar/gkt219. Epub 2013 Apr 10.
6
Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
Biochemistry. 2012 Nov 6;51(44):8705-29. doi: 10.1021/bi301180x. Epub 2012 Oct 26.
7
High-precision isothermal titration calorimetry with automated peak-shape analysis.
Anal Chem. 2012 Jun 5;84(11):5066-73. doi: 10.1021/ac3007522. Epub 2012 May 14.
8
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
9
Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly).
Biochemistry. 2012 May 1;51(17):3662-74. doi: 10.1021/bi201900j. Epub 2012 Apr 18.
10
YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops.
RNA. 2012 Apr;18(4):759-70. doi: 10.1261/rna.031518.111. Epub 2012 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验