Suppr超能文献

采用体外扩增的内皮细胞和静电纺丝壳聚糖/聚己内酯纳米纤维支架构建小直径血管移植物及其体内评价。

Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(ε-caprolactone) nanofibrous scaffolds.

机构信息

1 Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, P.R. China .

出版信息

Tissue Eng Part A. 2014 Jan;20(1-2):79-91. doi: 10.1089/ten.TEA.2013.0020. Epub 2013 Nov 7.

Abstract

Successful engineering of a small-diameter vascular graft is still a challenge despite numerous attempts for decades. The present study aimed at developing a tissue-engineered vascular graft (TEVG) using autologous outgrowth endothelial cells (OECs) and a hybrid biodegradable polymer scaffold. OECs were harvested from canine peripheral blood and proliferated in vitro, as well as identified by immunofluorescent staining. Electrospun hybrid chitosan/poly(ε-caprolactone) (CS/PCL) nanofibers were fabricated and served as vascular scaffolds. TEVGs were constructed in vitro by seeding OECs onto CS/PCL scaffolds, and then implanted into carotid arteries of cell-donor dogs (n=6). After 3 months of implantation, 5 out of 6 of TEVGs remained patent as compared with 1 out of 6 of unseeded grafts kept patent. Histological and immunohistochemical analyses of the TEVGs retrieved at 3 months revealed the regeneration of endothelium, and the presence of collagen and elastin. OECs labeled with fluorescent dye before implantation were detected in the retrieved TEVGs, indicating that the OECs participated in the vascular tissue regeneration. Biomechanical testing of TEVGs showed good mechanical properties that were closer to native carotid arteries. RT-PCR and western blot analysis demonstrated that TEVGs had favorable biological functional properties resembling native arteries. Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and regeneration ability.

摘要

尽管数十年来已经进行了大量尝试,但成功设计小口径血管移植物仍然是一个挑战。本研究旨在使用自体血管生成内皮细胞(OEC)和混合可生物降解聚合物支架开发组织工程血管移植物(TEVG)。从犬外周血中采集 OEC 并在体外增殖,并通过免疫荧光染色进行鉴定。制备电纺混合壳聚糖/聚(ε-己内酯)(CS/PCL)纳米纤维作为血管支架。将 OEC 接种到 CS/PCL 支架上,在体外构建 TEVG,然后将其植入供体细胞犬的颈动脉(n=6)。植入 3 个月后,与保持通畅的未接种移植物(6 个中的 1 个)相比,TEVG 中有 5 个保持通畅(6 个中的 5 个)。在 3 个月时取出的 TEVG 的组织学和免疫组织化学分析显示出内皮的再生,以及胶原和弹性蛋白的存在。在植入前用荧光染料标记的 OEC 可在取出的 TEVG 中检测到,表明 OEC 参与了血管组织的再生。TEVG 的生物力学测试显示出良好的机械性能,更接近天然颈动脉。RT-PCR 和 Western blot 分析表明,TEVG 具有良好的生物功能特性,类似于天然动脉。总体而言,这项研究为开发具有优异生物相容性和再生能力的小口径 TEVG 提供了一种新策略。

相似文献

2
Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
PLoS One. 2016 Jul 28;11(7):e0158555. doi: 10.1371/journal.pone.0158555. eCollection 2016.
3
Tissue-engineered blood vessels with endothelial nitric oxide synthase activity.
J Biomed Mater Res B Appl Biomater. 2008 May;85(2):537-46. doi: 10.1002/jbm.b.30977.
4
Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds.
J Biomed Mater Res B Appl Biomater. 2012 Jan;100(1):111-20. doi: 10.1002/jbm.b.31928. Epub 2011 Nov 24.
6
Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
Biomaterials. 2012 Jan;33(3):762-70. doi: 10.1016/j.biomaterials.2011.10.037. Epub 2011 Nov 4.
8
Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration.
Acta Biomater. 2016 Oct 1;43:303-313. doi: 10.1016/j.actbio.2016.07.048. Epub 2016 Jul 28.
10
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.

引用本文的文献

1
The influence of physical and spatial substrate characteristics on endothelial cells.
Mater Today Bio. 2024 Apr 18;26:101060. doi: 10.1016/j.mtbio.2024.101060. eCollection 2024 Jun.
2
Preparation and performance of random- and oriented-fiber membranes with core-shell structures coaxial electrospinning.
Front Bioeng Biotechnol. 2023 Jan 9;10:1114034. doi: 10.3389/fbioe.2022.1114034. eCollection 2022.
5
Mitomycin-Treated Endothelial and Smooth Muscle Cells Suitable for Safe Tissue Engineering Approaches.
Front Bioeng Biotechnol. 2022 Mar 11;10:772981. doi: 10.3389/fbioe.2022.772981. eCollection 2022.
7
Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model.
JVS Vasc Sci. 2020 Apr 11;1:100-108. doi: 10.1016/j.jvssci.2020.03.003. eCollection 2020.
8
Biofabrication of tissue engineering vascular systems.
APL Bioeng. 2021 May 7;5(2):021507. doi: 10.1063/5.0039628. eCollection 2021 Jun.
10
Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft.
Bioact Mater. 2021 Feb 6;6(8):2557-2568. doi: 10.1016/j.bioactmat.2020.12.021. eCollection 2021 Aug.

本文引用的文献

1
Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds.
J Biomed Mater Res B Appl Biomater. 2012 Jan;100(1):111-20. doi: 10.1002/jbm.b.31928. Epub 2011 Nov 24.
2
Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
Biomaterials. 2012 Jan;33(3):762-70. doi: 10.1016/j.biomaterials.2011.10.037. Epub 2011 Nov 4.
3
Isolating and defining cells to engineer human blood vessels.
Cell Prolif. 2011 Apr;44 Suppl 1(Suppl 1):15-21. doi: 10.1111/j.1365-2184.2010.00719.x.
4
Conduits for coronary artery bypass surgery: the quest for second best.
J Cardiovasc Med (Hagerstown). 2011 Jun;12(6):411-21. doi: 10.2459/JCM.0b013e328345a20d.
5
Biohybrid nanofiber constructs with anisotropic biomechanical properties.
J Biomed Mater Res B Appl Biomater. 2011 Feb;96(2):276-86. doi: 10.1002/jbm.b.31763. Epub 2010 Dec 10.
6
Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders.
Expert Rev Cardiovasc Ther. 2010 Oct;8(10):1433-45. doi: 10.1586/erc.10.121.
7
Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts.
J Mater Sci Mater Med. 2010 Dec;21(12):3207-15. doi: 10.1007/s10856-010-4164-8. Epub 2010 Oct 2.
8
Novel approach by nanobiomaterials in vascular tissue engineering.
Cell Transplant. 2011;20(1):63-70. doi: 10.3727/096368910X532864. Epub 2010 Sep 30.
9
Endothelial progenitor cells: quo vadis?
J Mol Cell Cardiol. 2011 Feb;50(2):266-72. doi: 10.1016/j.yjmcc.2010.07.009. Epub 2010 Jul 29.
10
Tissue-engineered vascular grafts: does cell seeding matter?
J Pediatr Surg. 2010 Jun;45(6):1299-305. doi: 10.1016/j.jpedsurg.2010.02.102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验