Suppr超能文献

鉴定铜绿假单胞菌 ExoU A2 磷脂酶的主要泛素结合结构域。

Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase.

机构信息

From the Department of Microbiology and Molecular Genetics and the Center for Infectious Disease Research and.

出版信息

J Biol Chem. 2013 Sep 13;288(37):26741-52. doi: 10.1074/jbc.M113.478529. Epub 2013 Aug 1.

Abstract

Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.

摘要

许多革兰氏阴性细菌病原体使用 III 型分泌系统将效应分子输送到宿主细胞的细胞质中。这些效应子中的许多已经进化到操纵宿主泛素系统,以改变宿主细胞的生理学或效应子本身的位置、稳定性或功能。ExoU 是铜绿假单胞菌用来破坏感染细胞的膜的一种有效的 A2 磷脂酶。由于缺乏一种必需的真核激活剂,该酶在细菌内部处于非活性状态,这种激活剂最近被鉴定为泛素。本研究旨在确定介导这种相互作用所需的 ExoU 区域,并确定对结合、ExoU 激活或两者都重要的泛素特性。使用生化和生物物理方法将泛素结合域映射到 ExoU 的 C 端四螺旋束上。泛素的疏水区对于完全结合亲和力和激活是必需的。通过在泛素中引入 L8R 取代,结合和激活被解偶联。纯化的 L8R 表现出与 ExoU 的亲本结合表型,但在体外没有激活磷脂酶。利用这些新的生化数据和双电子-电子共振的分子间距离测量,我们提出了一个 ExoU-单泛素复合物的模型。

相似文献

1
Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase.
J Biol Chem. 2013 Sep 13;288(37):26741-52. doi: 10.1074/jbc.M113.478529. Epub 2013 Aug 1.
2
Cooperative Substrate-Cofactor Interactions and Membrane Localization of the Bacterial Phospholipase A (PLA) Enzyme, ExoU.
J Biol Chem. 2017 Feb 24;292(8):3411-3419. doi: 10.1074/jbc.M116.760074. Epub 2017 Jan 9.
3
Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling.
Cell Biochem Biophys. 2019 Mar;77(1):79-87. doi: 10.1007/s12013-018-0851-8. Epub 2018 Jul 25.
4
Identification of a ubiquitin-binding interface using Rosetta and DEER.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):525-530. doi: 10.1073/pnas.1716861115. Epub 2018 Jan 2.
5
Interactions of the effector ExoU from with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes.
J Biol Chem. 2019 Dec 13;294(50):19012-19021. doi: 10.1074/jbc.RA119.010278. Epub 2019 Oct 29.
7
Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU.
Infect Immun. 2017 Dec 19;86(1). doi: 10.1128/IAI.00402-17. Print 2018 Jan.
8
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases.
J Bacteriol. 2019 Jan 28;201(4). doi: 10.1128/JB.00623-18. Print 2019 Feb 15.
9
Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU.
Biochemistry. 2006 Aug 29;45(34):10368-75. doi: 10.1021/bi060788j.

引用本文的文献

1
Site-directed spin label EPR studies of the structure and membrane interactions of the bacterial phospholipase ExoU.
Appl Magn Reson. 2024 Mar;55(1-3):279-295. doi: 10.1007/s00723-023-01620-0. Epub 2023 Oct 4.
2
chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling.
PLoS Comput Biol. 2023 Mar 31;19(3):e1010834. doi: 10.1371/journal.pcbi.1010834. eCollection 2023 Mar.
3
Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses.
Cells. 2023 Jan 3;12(1):195. doi: 10.3390/cells12010195.
4
ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Infection.
Toxins (Basel). 2022 Feb 18;14(2):152. doi: 10.3390/toxins14020152.
8
A pipeline to evaluate inhibitors of the Pseudomonas aeruginosa exotoxin U.
Biochem J. 2021 Feb 12;478(3):647-668. doi: 10.1042/BCJ20200780.
9
Characterization of the ExoU activation mechanism using EPR and integrative modeling.
Sci Rep. 2020 Nov 12;10(1):19700. doi: 10.1038/s41598-020-76023-3.
10
Interactions of the effector ExoU from with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes.
J Biol Chem. 2019 Dec 13;294(50):19012-19021. doi: 10.1074/jbc.RA119.010278. Epub 2019 Oct 29.

本文引用的文献

1
Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU.
Infect Immun. 2013 Aug;81(8):2873-81. doi: 10.1128/IAI.00414-13. Epub 2013 May 28.
2
Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU.
PLoS One. 2012;7(11):e49388. doi: 10.1371/journal.pone.0049388. Epub 2012 Nov 14.
3
Five mechanisms of manipulation by bacterial effectors: a ubiquitous theme.
PLoS Pathog. 2012;8(8):e1002823. doi: 10.1371/journal.ppat.1002823. Epub 2012 Aug 23.
4
Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability.
J Biol Chem. 2012 Jul 20;287(30):25407-18. doi: 10.1074/jbc.M111.301440. Epub 2012 May 25.
5
Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa.
PLoS Pathog. 2012;8(4):e1002637. doi: 10.1371/journal.ppat.1002637. Epub 2012 Apr 5.
6
Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions.
Annu Rev Biochem. 2012;81:291-322. doi: 10.1146/annurev-biochem-051810-094654. Epub 2012 Apr 5.
7
The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response.
Nature. 2012 Mar 11;483(7391):623-6. doi: 10.1038/nature10894.
8
Host proteasomal degradation generates amino acids essential for intracellular bacterial growth.
Science. 2011 Dec 16;334(6062):1553-7. doi: 10.1126/science.1212868. Epub 2011 Nov 17.
9
Clinical outcomes of type III Pseudomonas aeruginosa bacteremia.
Crit Care Med. 2012 Apr;40(4):1157-63. doi: 10.1097/CCM.0b013e3182377906.
10
Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU.
Mol Microbiol. 2011 Dec;82(6):1454-67. doi: 10.1111/j.1365-2958.2011.07904.x. Epub 2011 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验