Suppr超能文献

基于结构的含 GluN3 的 N-甲基-D-天冬氨酸受体拮抗剂的发现

Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.

作者信息

Kvist Trine, Greenwood Jeremy R, Hansen Kasper B, Traynelis Stephen F, Bräuner-Osborne Hans

机构信息

Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Fruebjergvej 3, DK-2100 Copenhagen, Denmark.

Schrödinger, Inc., 120 West 45th St., New York, NY 10036, USA.

出版信息

Neuropharmacology. 2013 Dec;75:324-36. doi: 10.1016/j.neuropharm.2013.08.003. Epub 2013 Aug 22.

Abstract

NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activated diheteromeric GluN1/N3 receptors. The glycine-binding GluN1 and GluN3 subunits display strikingly different pharmacological selectivity profiles. However, the pharmacological characterization of GluN3-containing receptors has been hampered by the lack of methods and pharmacological tools to study GluN3 subunit pharmacology in isolation. Here, we have developed a method to study the pharmacology of GluN3 subunits in recombinant diheteromeric GluN1/N3 receptors by mutating the orthosteric ligand-binding pocket in GluN1. This method is suitable for performing compound screening and characterization of structure-activity relationship studies on GluN3 ligands. We have performed a virtual screen of the orthosteric binding site of GluN3A in the search for antagonists with selectivity for GluN3 subunits. In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands.

摘要

N-甲基-D-天冬氨酸(NMDA)受体是配体门控离子通道,可组装成四聚体受体复合物,该复合物由结合甘氨酸的GluN1和GluN3亚基(GluN3A-B)以及结合谷氨酸的GluN2亚基(GluN2A-D)组成。NMDA受体可以组装成GluN1/N2受体以及含GluN3的NMDA受体,后者包括谷氨酸/甘氨酸激活的三聚体GluN1/N2/N3受体或甘氨酸激活的二聚体GluN1/N3受体。结合甘氨酸的GluN1和GluN3亚基表现出截然不同的药理学选择性特征。然而,由于缺乏单独研究GluN3亚基药理学的方法和药理学工具,含GluN3受体的药理学特性研究受到了阻碍。在此,我们开发了一种方法,通过突变GluN1中的正构配体结合口袋,来研究重组二聚体GluN1/N3受体中GluN3亚基的药理学。该方法适用于对GluN3配体进行化合物筛选和构效关系研究的表征。我们对GluN3A的正构结合位点进行了虚拟筛选,以寻找对GluN3亚基具有选择性的拮抗剂。在随后对99种选定化合物的药理学评估中,我们鉴定出6-羟基-[1,2,5]恶二唑并[3,4-b]吡嗪-5(4H)-酮(TK80),这是一种对GluN3B亚基具有偏好性的新型竞争性拮抗剂。意外的是,我们还鉴定出[2-羟基-5-((4-(吡啶-3-基)噻唑-2-基)氨基]苯甲酸(TK13)和4-(2,4-二氯苯甲酰基)-1H-吡咯-羧酸(TK30),这两种新型非竞争性GluN3拮抗剂。这些发现表明,可以利用GluN3和GluN1正构结合位点之间的结构差异来生成选择性配体。

相似文献

1
Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
Neuropharmacology. 2013 Dec;75:324-36. doi: 10.1016/j.neuropharm.2013.08.003. Epub 2013 Aug 22.
2
Negative allosteric modulation of GluN1/GluN3 NMDA receptors.
Neuropharmacology. 2020 Oct 1;176:108117. doi: 10.1016/j.neuropharm.2020.108117. Epub 2020 May 7.
4
Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6942-E6951. doi: 10.1073/pnas.1707752114. Epub 2017 Jul 31.
5
The N-terminal domain of the GluN3A subunit determines the efficacy of glycine-activated NMDA receptors.
Neuropharmacology. 2016 Jun;105:133-141. doi: 10.1016/j.neuropharm.2016.01.014. Epub 2016 Jan 9.
6
Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors.
Neuropharmacology. 2019 Oct;157:107671. doi: 10.1016/j.neuropharm.2019.107671. Epub 2019 Jun 13.
7
Arrangement of subunits in functional NMDA receptors.
J Neurosci. 2011 Aug 3;31(31):11295-304. doi: 10.1523/JNEUROSCI.5612-10.2011.
8
Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.
Neuron. 2014 Mar 5;81(5):1084-1096. doi: 10.1016/j.neuron.2014.01.035.
9
Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors.
Eur J Pharmacol. 2012 Jul 5;686(1-3):22-31. doi: 10.1016/j.ejphar.2012.04.036. Epub 2012 Apr 27.
10
Properties of Triheteromeric -Methyl-d-Aspartate Receptors Containing Two Distinct GluN1 Isoforms.
Mol Pharmacol. 2018 May;93(5):453-467. doi: 10.1124/mol.117.111427. Epub 2018 Feb 26.

引用本文的文献

1
AI-enhanced virtual screening approach to hit identification for GluN1/GluN3A NMDA receptor.
Acta Pharmacol Sin. 2025 Aug 26. doi: 10.1038/s41401-025-01644-1.
3
Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors.
Acta Pharmacol Sin. 2025 Jun 6. doi: 10.1038/s41401-025-01580-0.
5
Discovery of novel GluN1/GluN3A NMDA receptor inhibitors using a deep learning-based method.
Acta Pharmacol Sin. 2025 May 12. doi: 10.1038/s41401-025-01571-1.
6
The GluN3-containing NMDA receptors.
Channels (Austin). 2025 Dec;19(1):2490308. doi: 10.1080/19336950.2025.2490308. Epub 2025 Apr 16.
7
Structural prediction of GluN3 NMDA receptors.
Front Physiol. 2024 Aug 20;15:1446459. doi: 10.3389/fphys.2024.1446459. eCollection 2024.
8
Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
Methods Mol Biol. 2024;2799:55-77. doi: 10.1007/978-1-0716-3830-9_5.
9
Plasticity in the Functional Properties of NMDA Receptors Improves Network Stability during Severe Energy Stress.
J Neurosci. 2024 Feb 28;44(9):e0502232024. doi: 10.1523/JNEUROSCI.0502-23.2024.
10
Activation of excitatory glycine NMDA receptors: At the mercy of a whimsical GluN1 subunit.
J Gen Physiol. 2023 Jun 5;155(6). doi: 10.1085/jgp.202313391. Epub 2023 May 3.

本文引用的文献

1
Genetic deletion of NR3A accelerates glutamatergic synapse maturation.
PLoS One. 2012;7(8):e42327. doi: 10.1371/journal.pone.0042327. Epub 2012 Aug 1.
2
3
Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.
J Neurosci. 2012 May 2;32(18):6197-208. doi: 10.1523/JNEUROSCI.5757-11.2012.
4
GluN3 subunit-containing NMDA receptors: not just one-trick ponies.
Trends Neurosci. 2012 Apr;35(4):240-9. doi: 10.1016/j.tins.2011.11.010. Epub 2012 Jan 10.
5
The advantage of global fitting of data involving complex linked reactions.
Methods Mol Biol. 2012;796:399-421. doi: 10.1007/978-1-61779-334-9_22.
6
NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity.
Nat Neurosci. 2011 Mar;14(3):338-44. doi: 10.1038/nn.2750. Epub 2011 Feb 6.
8
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.
9
New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function.
Mol Pharmacol. 2010 Jul;78(1):1-11. doi: 10.1124/mol.110.064006. Epub 2010 Apr 2.
10
Influence of the NR3A subunit on NMDA receptor functions.
Prog Neurobiol. 2010 May;91(1):23-37. doi: 10.1016/j.pneurobio.2010.01.004. Epub 2010 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验