Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a012658. doi: 10.1101/cshperspect.a012658.
By some estimates, a eukaryotic cell must repair up to 10,000 DNA lesions per cell cycle to counteract endogenous sources of DNA damage. Exposure to environmental toxins, UV sources, or other radiations only increases this enormous number. Failure to repair such lesions can lead to a deleterious mutation rate, genomic instability, or cell death. The timely and efficient repair of eukaryotic DNA damage is further complicated by the realization that DNA lesions must be detected and repaired in the context of chromatin with its complex organization within the nucleus. Numerous studies have shown that chromatin packaging can inhibit nearly all repair pathways, and recent work has defined specific mechanisms that facilitate DNA repair within the chromatin context. In this review, we provide a broad overview of chromatin regulatory mechanisms, mainly at the nucleosomal level, and then focus on recent work that elucidates the role of chromatin structure in regulating the timely and efficient repair of DNA double-strand breaks (DSBs).
据估计,真核细胞每完成一个细胞周期,就必须修复多达 10000 个 DNA 损伤,以抵消内源性 DNA 损伤源的影响。暴露于环境毒素、紫外线源或其他辐射源只会增加这个巨大的数字。如果不能修复这些损伤,就会导致有害的突变率、基因组不稳定性或细胞死亡。真核生物 DNA 损伤的及时有效的修复还因以下事实而变得更加复杂,即必须在核内染色质的复杂组织背景下检测和修复 DNA 损伤。大量研究表明,染色质包装可以抑制几乎所有的修复途径,最近的工作已经定义了促进染色质环境中 DNA 修复的特定机制。在这篇综述中,我们提供了一个广泛的染色质调控机制概述,主要是在核小体水平上,然后重点介绍最近的工作,这些工作阐明了染色质结构在调控 DNA 双链断裂 (DSB) 的及时有效修复中的作用。