Suppr超能文献

核小体动力学作为整合 DNA 损伤与修复的模块化系统。

Nucleosome dynamics as modular systems that integrate DNA damage and repair.

机构信息

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

出版信息

Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a012658. doi: 10.1101/cshperspect.a012658.

Abstract

By some estimates, a eukaryotic cell must repair up to 10,000 DNA lesions per cell cycle to counteract endogenous sources of DNA damage. Exposure to environmental toxins, UV sources, or other radiations only increases this enormous number. Failure to repair such lesions can lead to a deleterious mutation rate, genomic instability, or cell death. The timely and efficient repair of eukaryotic DNA damage is further complicated by the realization that DNA lesions must be detected and repaired in the context of chromatin with its complex organization within the nucleus. Numerous studies have shown that chromatin packaging can inhibit nearly all repair pathways, and recent work has defined specific mechanisms that facilitate DNA repair within the chromatin context. In this review, we provide a broad overview of chromatin regulatory mechanisms, mainly at the nucleosomal level, and then focus on recent work that elucidates the role of chromatin structure in regulating the timely and efficient repair of DNA double-strand breaks (DSBs).

摘要

据估计,真核细胞每完成一个细胞周期,就必须修复多达 10000 个 DNA 损伤,以抵消内源性 DNA 损伤源的影响。暴露于环境毒素、紫外线源或其他辐射源只会增加这个巨大的数字。如果不能修复这些损伤,就会导致有害的突变率、基因组不稳定性或细胞死亡。真核生物 DNA 损伤的及时有效的修复还因以下事实而变得更加复杂,即必须在核内染色质的复杂组织背景下检测和修复 DNA 损伤。大量研究表明,染色质包装可以抑制几乎所有的修复途径,最近的工作已经定义了促进染色质环境中 DNA 修复的特定机制。在这篇综述中,我们提供了一个广泛的染色质调控机制概述,主要是在核小体水平上,然后重点介绍最近的工作,这些工作阐明了染色质结构在调控 DNA 双链断裂 (DSB) 的及时有效修复中的作用。

相似文献

1
Nucleosome dynamics as modular systems that integrate DNA damage and repair.
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a012658. doi: 10.1101/cshperspect.a012658.
2
Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7507-12. doi: 10.1073/pnas.1504868112. Epub 2015 Jun 1.
4
Chromatin remodeling at DNA double-strand breaks.
Cell. 2013 Mar 14;152(6):1344-54. doi: 10.1016/j.cell.2013.02.011.
5
SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair.
Aging (Albany NY). 2009 Jan 15;1(1):109-21. doi: 10.18632/aging.100011.
6
Chromatin dynamics and the repair of DNA double strand breaks.
Cell Cycle. 2011 Jan 15;10(2):261-7. doi: 10.4161/cc.10.2.14543.
7
When repair meets chromatin. First in series on chromatin dynamics.
EMBO Rep. 2002 Jan;3(1):28-33. doi: 10.1093/embo-reports/kvf005.
8
Repair of UV lesions in nucleosomes--intrinsic properties and remodeling.
DNA Repair (Amst). 2005 Jul 28;4(8):855-69. doi: 10.1016/j.dnarep.2005.04.005.
9
Tails of histones in DNA double-strand break repair.
Mutagenesis. 2005 May;20(3):153-63. doi: 10.1093/mutage/gei031. Epub 2005 Apr 20.
10
Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair.
Mol Cell. 2012 Dec 14;48(5):723-33. doi: 10.1016/j.molcel.2012.09.026. Epub 2012 Oct 30.

引用本文的文献

3
Characterization and implementation of a miniature X-ray system for live cell microscopy.
Mutat Res. 2022 Jan-Jun;824:111772. doi: 10.1016/j.mrfmmm.2021.111772. Epub 2021 Dec 9.
4
Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of AAA+ ATPase Abo1.
Mol Cells. 2021 Feb 28;44(2):79-87. doi: 10.14348/molcells.2021.2242.
5
The Chromatin Response to Double-Strand DNA Breaks and Their Repair.
Cells. 2020 Aug 7;9(8):1853. doi: 10.3390/cells9081853.
6
Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination.
Cell. 2020 Jun 11;181(6):1380-1394.e18. doi: 10.1016/j.cell.2020.04.056. Epub 2020 Jun 4.
8
Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24066-24074. doi: 10.1073/pnas.1911880116. Epub 2019 Nov 11.
9
Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates.
Nucleic Acids Res. 2019 Dec 2;47(21):11225-11237. doi: 10.1093/nar/gkz810.
10
Damage sensor role of UV-DDB during base excision repair.
Nat Struct Mol Biol. 2019 Aug;26(8):695-703. doi: 10.1038/s41594-019-0261-7. Epub 2019 Jul 22.

本文引用的文献

1
Chromatin and the genome integrity network.
Nat Rev Genet. 2013 Jan;14(1):62-75. doi: 10.1038/nrg3345.
2
Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair.
Mol Cell. 2012 Dec 14;48(5):723-33. doi: 10.1016/j.molcel.2012.09.026. Epub 2012 Oct 30.
3
The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair.
Int J Mol Sci. 2012;13(9):11954-11973. doi: 10.3390/ijms130911954. Epub 2012 Sep 20.
4
Chromatin dynamics during nucleotide excision repair: histones on the move.
Int J Mol Sci. 2012;13(9):11895-11911. doi: 10.3390/ijms130911895. Epub 2012 Sep 19.
5
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation.
Mol Cell Biol. 2012 Nov;32(22):4727-40. doi: 10.1128/MCB.00566-12. Epub 2012 Sep 24.
6
The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection.
Nature. 2012 Sep 27;489(7417):581-4. doi: 10.1038/nature11353. Epub 2012 Sep 9.
7
The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends.
Nature. 2012 Sep 27;489(7417):576-80. doi: 10.1038/nature11355. Epub 2012 Sep 9.
8
Prime, repair, restore: the active role of chromatin in the DNA damage response.
Mol Cell. 2012 Jun 29;46(6):722-34. doi: 10.1016/j.molcel.2012.06.002.
9
Rules of engagement for base excision repair in chromatin.
J Cell Physiol. 2013 Feb;228(2):258-66. doi: 10.1002/jcp.24134.
10
A unified phylogeny-based nomenclature for histone variants.
Epigenetics Chromatin. 2012 Jun 21;5:7. doi: 10.1186/1756-8935-5-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验