School of Chemistry, The University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, UK.
Environ Int. 2013 Nov;61:36-44. doi: 10.1016/j.envint.2013.09.010. Epub 2013 Oct 3.
Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a +5°C increase in air temperature on the 2003 baseline. Deaths brought forward and hospitalisation burdens for 12 UK regions were calculated from population-weighted daily maximum 8-hour O3. The magnitude of changes in annual mean surface O3 over the UK for +5°C temperature (+1.0 to +1.5ppbv, depending on region) was comparable to those due to inter-annual meteorological variability (-1.5 to +1.5ppbv) but considerably less than changes due to precursor emissions changes by 2030 (-3.0 to +3.5ppbv, depending on scenario and region). Including population changes in 2030, both the 'current legislation' and 'maximum feasible reduction' scenarios yield greater O3-attributable health burdens than the 'high' emission scenario: +28%, +22%, and +16%, respectively, above 2003 baseline deaths brought forward (11,500) and respiratory hospital admissions (30,700), using O3 exposure over the full year and no threshold for health effects. The health burdens are greatest under the 'current legislation' scenario because O3 concentrations increase as a result of both increases in background O3 concentration and decreases in UK NOx emissions. For the +5°C scenario, and no threshold (and not including population increases), total UK health burden increases by 500 premature deaths (4%) relative to the 2003 baseline. If a 35ppbv threshold for O3 effects is assumed, health burdens are more sensitive to the current legislation and +5°C scenarios, although total health burdens are roughly an order of magnitude lower. In all scenarios, the assumption of a threshold increases the proportion of health burden in the south and east of the UK compared with the no threshold assumption. The study highlights that the total, and geographically-apportioned, O3-attributable health burdens in the UK are highly sensitive to the future trends of hemispheric, regional and local emissions of O3 precursors, and to the assumption of a threshold for O3 effect.
暴露于地面臭氧(O3)中,其受前体化学物质排放、气象和人口分布的影响,与超额死亡率和呼吸道发病率有关。在这项研究中,使用 EMEP-WRF 大气化学输送模型,以 5km 的水平分辨率模拟了 2003 年基线年、2030 年三个人为排放情景以及 2003 年基线气温升高 5°C 时不列颠群岛的地面 O3 浓度。从人口加权的每日最大 8 小时 O3 中计算了 12 个英国地区的死亡提前和住院负担。英国年平均地面 O3 的变化幅度(+5°C 时为+1.0 至+1.5ppbv,具体取决于区域)与由于年际气象变化而引起的变化相当(-1.5 至+1.5ppbv),但远小于 2030 年由于前体排放变化引起的变化(+3.0 至+3.5ppbv,具体取决于情景和区域)。包括 2030 年的人口变化,“现行法规”和“最大可行减排”情景产生的 O3 归因健康负担均高于“高”排放情景:分别比 2003 年基线死亡提前(11500)和呼吸道住院(30700)增加+28%、+22%和+16%,使用全年的 O3 暴露且没有健康影响的阈值。在“现行法规”情景下,健康负担最大,因为 O3 浓度的增加是由于背景 O3 浓度的增加和英国 NOx 排放量的减少所致。对于+5°C 情景,且没有阈值(不包括人口增长),与 2003 年基线相比,英国的总健康负担增加了 500 例过早死亡(4%)。如果假设 O3 效应的 35ppbv 阈值,则健康负担对现行法规和+5°C 情景更加敏感,尽管总健康负担要低一个数量级左右。在所有情景中,与无阈值假设相比,阈值的假设增加了英国南部和东部的健康负担比例。该研究强调,英国的总 O3 归因健康负担和地理分配的 O3 归因健康负担对臭氧前体的半球、区域和地方排放的未来趋势以及 O3 效应的阈值假设高度敏感。