From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia and.
J Biol Chem. 2013 Nov 29;288(48):34428-42. doi: 10.1074/jbc.M113.512582. Epub 2013 Oct 7.
α-Conotoxin AuIB is a selective α3β4 nicotinic acetylcholine receptor (nAChR) subtype inhibitor. Its analgesic properties are believed to result from it activating GABAB receptors and subsequently inhibiting CaV2.2 voltage-gated calcium channels. The structural determinants that mediate diverging AuIB activity at these targets are unknown. We performed alanine scanning mutagenesis of AuIB and α3β4 nAChR, homology modeling, and molecular dynamics simulations to identify the structural determinants of the AuIB·α3β4 nAChR interaction. Two alanine-substituted AuIB analogues, [P6A]AuIB and [F9A]AuIB, did not inhibit the α3β4 nAChR. NMR and CD spectroscopy studies demonstrated that [F9A]AuIB retains its native globular structure, so its activity loss is probably due to loss of specific toxin-receptor residue pairwise contacts. Compared with AuIB, the concentration-response curve for inhibition of α3β4 by [F9A]AuIB shifted rightward more than 10-fold, and its subtype selectivity profile changed. Homology modeling and molecular dynamics simulations suggest that Phe-9 of AuIB interacts with a two-residue binding pocket on the β4 nAChR subunit. This hypothesis was confirmed by site-directed mutagenesis of the β4-Trp-59 and β4-Lys-61 residues of loop D, which form a putative binding pocket. AuIB analogues with Phe-9 substitutions corroborated the finding of a binding pocket on the β4 subunit and gave further insight into how AuIB Phe-9 interacts with the β4 subunit. In summary, we identified critical residues that mediate interactions between AuIB and its cognate nAChR subtype. These findings might help improve the design of analgesic conopeptides that selectively "avoid" nAChR receptors while targeting receptors involved with nociception.
α-芋螺毒素 AuIB 是一种选择性的 α3β4 烟碱型乙酰胆碱受体 (nAChR) 亚型抑制剂。它的镇痛特性被认为是由于它激活 GABAB 受体,随后抑制 CaV2.2 电压门控钙通道。介导 AuIB 在这些靶点上活性差异的结构决定因素尚不清楚。我们对 AuIB 和 α3β4 nAChR 进行了丙氨酸扫描突变、同源建模和分子动力学模拟,以确定 AuIB·α3β4 nAChR 相互作用的结构决定因素。两种丙氨酸取代的 AuIB 类似物 [P6A]AuIB 和 [F9A]AuIB 均不能抑制 α3β4 nAChR。NMR 和 CD 光谱研究表明,[F9A]AuIB 保留了其天然的球形结构,因此其活性丧失可能是由于特定毒素-受体残基对的接触丧失。与 AuIB 相比,[F9A]AuIB 抑制 α3β4 的浓度-反应曲线向右移动超过 10 倍,其亚型选择性谱发生变化。同源建模和分子动力学模拟表明,AuIB 的苯丙氨酸-9 与 β4 nAChR 亚基上的两个残基结合口袋相互作用。该假设通过对环 D 中的 β4-Trp-59 和 β4-Lys-61 残基进行定点突变得到了证实,这两个残基形成了一个假定的结合口袋。用苯丙氨酸-9 取代的 AuIB 类似物证实了 β4 亚基上存在一个结合口袋,并进一步深入了解 AuIB 苯丙氨酸-9 与 β4 亚基的相互作用。总之,我们确定了介导 AuIB 与其同源 nAChR 亚型相互作用的关键残基。这些发现可能有助于改进镇痛芋螺毒素的设计,这些毒素选择性地“回避”nAChR 受体,同时靶向与疼痛感知相关的受体。