Suppr超能文献

表皮生长因子受体(EGFR)磷酸化肿瘤源性 EGFRvIII,驱动胶质母细胞瘤中 STAT3/5 的激活和进展。

EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma.

机构信息

Department of Neurology, University of California, San Francisco, 1450 Third Street, MC0520, San Francisco, CA 94158-9001, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, MC0520, San Francisco, CA 94158-9001, USA.

出版信息

Cancer Cell. 2013 Oct 14;24(4):438-49. doi: 10.1016/j.ccr.2013.09.004.

Abstract

EGFRvIII, a frequently occurring mutation in primary glioblastoma, results in a protein product that cannot bind ligand, but signals constitutively. Deducing how EGFRvIII causes transformation has been difficult because of autocrine and paracrine loops triggered by EGFRvIII alone or in heterodimers with wild-type EGFR. Here, we document coexpression of EGFR and EGFRvIII in primary human glioblastoma that drives transformation and tumorigenesis in a cell-intrinsic manner. We demonstrate enhancement of downstream STAT signaling triggered by EGFR-catalyzed phosphorylation of EGFRvIII, implicating EGFRvIII as a substrate for EGFR. Subsequent phosphorylation of STAT3 requires nuclear entry of EGFRvIII and formation of an EGFRvIII-STAT3 nuclear complex. Our findings clarify specific oncogenic signaling relationships between EGFR and EGFRvIII in glioblastoma.

摘要

EGFRvIII 是原发性脑胶质瘤中经常发生的突变,导致不能结合配体但持续发出信号的蛋白质产物。由于 EGFRvIII 单独或与野生型 EGFR 形成异二聚体触发的自分泌和旁分泌环,推断 EGFRvIII 如何引起转化一直很困难。在这里,我们记录了 EGFR 和 EGFRvIII 在原发性人脑胶质瘤中的共表达,这些胶质瘤以细胞内在的方式驱动转化和肿瘤发生。我们证明了由 EGFR 催化的 EGFRvIII 磷酸化触发的下游 STAT 信号的增强,这暗示 EGFRvIII 是 EGFR 的底物。STAT3 的后续磷酸化需要 EGFRvIII 的核内进入和 EGFRvIII-STAT3 核复合物的形成。我们的发现阐明了脑胶质瘤中 EGFR 和 EGFRvIII 之间特定的致癌信号关系。

相似文献

1
EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma.
Cancer Cell. 2013 Oct 14;24(4):438-49. doi: 10.1016/j.ccr.2013.09.004.
2
EGFR and EGFRvIII in glioblastoma: partners in crime.
Cancer Cell. 2013 Oct 14;24(4):403-4. doi: 10.1016/j.ccr.2013.09.017.
3
Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes.
Mol Cancer Res. 2010 Feb;8(2):232-45. doi: 10.1158/1541-7786.MCR-09-0391. Epub 2010 Feb 9.
4
Control of glioblastoma tumorigenesis by feed-forward cytokine signaling.
Nat Neurosci. 2016 Jun;19(6):798-806. doi: 10.1038/nn.4295. Epub 2016 Apr 25.
6
EGFRvIII Confers Sensitivity to Saracatinib in a STAT5-Dependent Manner in Glioblastoma.
Int J Mol Sci. 2024 Jun 6;25(11):6279. doi: 10.3390/ijms25116279.
7
EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma.
Cancer Res. 2018 Dec 15;78(24):6785-6794. doi: 10.1158/0008-5472.CAN-17-3551. Epub 2018 Nov 6.
8
EGFRvIII-Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival.
Mol Cancer Res. 2018 Jul;16(7):1185-1195. doi: 10.1158/1541-7786.MCR-18-0125. Epub 2018 May 3.
9
An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII.
Oncogene. 2014 Aug 14;33(33):4253-64. doi: 10.1038/onc.2013.400. Epub 2013 Sep 30.
10
EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma.
Oncogene. 2015 Jan 2;34(1):129-134. doi: 10.1038/onc.2013.534. Epub 2013 Dec 23.

引用本文的文献

1
Near-Infrared Photoimmunotherapy in Brain Tumors-An Unexplored Frontier.
Pharmaceuticals (Basel). 2025 May 19;18(5):751. doi: 10.3390/ph18050751.
3
Targeting adenosine enhances immunotherapy in MSS colorectal cancer with EGFRvIII mutation.
J Immunother Cancer. 2025 Feb 13;13(2):e010126. doi: 10.1136/jitc-2024-010126.
4
PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis.
Theranostics. 2025 Jan 1;15(4):1255-1271. doi: 10.7150/thno.102391. eCollection 2025.
5
CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.
J Exp Clin Cancer Res. 2025 Jan 3;44(1):3. doi: 10.1186/s13046-024-03254-x.
7
Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications.
Noncoding RNA Res. 2024 Dec 3;11:1-21. doi: 10.1016/j.ncrna.2024.11.006. eCollection 2025 Apr.
8
Co-culture models for investigating cellular crosstalk in the glioma microenvironment.
Cancer Pathog Ther. 2023 Nov 7;2(4):219-230. doi: 10.1016/j.cpt.2023.11.002. eCollection 2024 Oct.
9
EGFR and EGFRvIII coopt host defense pathways promoting progression in glioblastoma.
Neuro Oncol. 2025 Feb 10;27(2):383-397. doi: 10.1093/neuonc/noae182.
10
HER3 receptor and its role in the therapeutic management of metastatic breast cancer.
J Transl Med. 2024 Jul 17;22(1):665. doi: 10.1186/s12967-024-05445-8.

本文引用的文献

1
Effects of transient changes in silage dry matter concentration on lactating dairy cows.
J Dairy Sci. 2013 Jun;96(6):3924-35. doi: 10.3168/jds.2012-6330. Epub 2013 Apr 5.
2
Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252.
Antimicrob Agents Chemother. 2013 May;57(5):2182-90. doi: 10.1128/AAC.02307-12. Epub 2013 Mar 4.
3
Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma.
Acta Neuropathol. 2013 Mar;125(3):373-84. doi: 10.1007/s00401-012-1070-9. Epub 2012 Nov 25.
4
Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma.
Neuro Oncol. 2012 Sep;14(9):1136-45. doi: 10.1093/neuonc/nos139. Epub 2012 Jun 29.
7
STAT3 tyrosine phosphorylation influences survival in glioblastoma.
J Neurooncol. 2010 Dec;100(3):339-43. doi: 10.1007/s11060-010-0195-8. Epub 2010 May 9.
8
Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes.
Mol Cancer Res. 2010 Feb;8(2):232-45. doi: 10.1158/1541-7786.MCR-09-0391. Epub 2010 Feb 9.
10
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.
Cell. 2009 Jun 26;137(7):1293-307. doi: 10.1016/j.cell.2009.04.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验