Kaldenhoff Ralf, Kai Lei, Uehlein Norbert
Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany.
Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany.
Biochim Biophys Acta. 2014 May;1840(5):1592-5. doi: 10.1016/j.bbagen.2013.09.037. Epub 2013 Oct 17.
Determination of CO2 diffusion rates in living cells revealed inconsistencies with existing models about the mechanisms of membrane gas transport. Mainly, these discrepancies exist in the determined CO2 diffusion rates of bio-membranes, which were orders of magnitudes below those for pure lipid bilayers or theoretical considerations as well as in the observation that membrane insertion of specific aquaporins was rescuing high CO2 transport rates. This effect was confirmed by functional aquaporin protein analysis in heterologous expression systems as well as in bacteria, plants and partly in mammals.
This review summarizes the arguments in favor of and against aquaporin facilitated membrane diffusion of CO2 and reports about its importance for the physiology of living organisms.
Most likely, the aquaporin tetramer forming an additional fifth pore is required for CO2 diffusion facilitation. Aquaporin tetramer formation, membrane integration and disintegration could provide a mechanism for regulation of cellular CO2 exchange. The physiological importance of aquaporin mediated CO2 membrane diffusion could be shown for plants and cyanobacteria and partly for mammals.
Taking the mentioned results into account, consequences for our current picture of cell membrane transport emerge. It appears that in some or many instances, membranes might not be as permeable as it was suggested by current bio-membrane models, opening an additional way of controlling the cellular influx or efflux of volatile substances like CO2. This article is part of a Special Issue entitled Aquaporins.
对活细胞中二氧化碳扩散速率的测定揭示了与现有膜气体运输机制模型的不一致。主要而言,这些差异存在于生物膜的二氧化碳扩散速率测定中,其数值比纯脂质双层或理论推测的速率低几个数量级,同时还存在这样的观察结果,即特定水通道蛋白插入膜中可挽救高二氧化碳运输速率。在异源表达系统以及细菌、植物和部分哺乳动物中进行的功能性水通道蛋白分析证实了这种效应。
本综述总结了支持和反对水通道蛋白促进二氧化碳膜扩散的观点,并报告了其对生物体生理学的重要性。
促进二氧化碳扩散很可能需要形成额外第五个孔的水通道蛋白四聚体。水通道蛋白四聚体的形成、膜整合和解离可为细胞二氧化碳交换的调节提供一种机制。水通道蛋白介导的二氧化碳膜扩散的生理重要性已在植物和蓝细菌中得到证实,在部分哺乳动物中也有体现。
考虑到上述结果,我们对细胞膜运输的当前认知会产生一些后果。似乎在某些或许多情况下,膜的渗透性可能不像当前生物膜模型所暗示的那样高,这为控制细胞对二氧化碳等挥发性物质的流入或流出开辟了一条额外途径。本文是名为“水通道蛋白”的特刊的一部分。