Suppr超能文献

在猪毛菜科的光合和非光合寄生植物中,功能和物理基因组缩减的机制。

Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family.

机构信息

Department of Systematic and Evolutionary Botany, University of Viena, A-1030 Viena, Austria.

出版信息

Plant Cell. 2013 Oct;25(10):3711-25. doi: 10.1105/tpc.113.113373. Epub 2013 Oct 18.

Abstract

Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.

摘要

非光合植物具有强烈重配置的质体基因组,这归因于光合作用和管家基因的趋同丧失,使它们成为研究在放松选择压力下基因组进化的优秀系统。我们报告了 10 种光合和非光合寄生植物及其来自列当科(Orobanchaceae)的非寄生姐妹的完整质体基因组。通过重建基因丢失和基因组重排的历史,我们发现专性寄生的建立引发了选择压力的放松。部分原因是由于一个反向重复区域的独立丢失,列当科的质体基因组大小变化了 3.5 倍,美国 Squawroot(Conopholis americana)中的 45kb 代表了陆地植物中报道的最小质体。在 42 到 74 个保留的独特基因中,只有 16 个蛋白基因、15 个 tRNA 和 4 个 rRNA 是常见的。一些全寄生植物保留了具有完整开放阅读框的 ATP 合酶基因,表明这些植物中该基因的功能延长。光合作用的丧失改变了染色体结构,因为重组因素积累,随着功能的减少,促进了大规模的染色体重排。DNA 片段的保留受到其与选择下基因的接近程度以及与操纵子中基因共同发生的程度的强烈影响,这表明除了基因功能之外,还有复杂的限制因素决定了非光合植物质体区域在进化上的存活时间。

相似文献

2
Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae.
New Phytol. 2016 Apr;210(2):680-93. doi: 10.1111/nph.13784. Epub 2015 Dec 16.
3
Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae.
BMC Plant Biol. 2018 Feb 6;18(1):30. doi: 10.1186/s12870-018-1249-x.
5
Complete Plastid Genome of the Recent Holoparasite Lathraea squamaria Reveals Earliest Stages of Plastome Reduction in Orobanchaceae.
PLoS One. 2016 Mar 2;11(3):e0150718. doi: 10.1371/journal.pone.0150718. eCollection 2016.
6
Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis.
Curr Biol. 2011 Dec 20;21(24):2098-104. doi: 10.1016/j.cub.2011.11.011. Epub 2011 Dec 8.

引用本文的文献

1
Comparative plastomes of five species: genome organization, structural features, and patterns of pseudogenization and gene loss.
AoB Plants. 2025 Jun 24;17(4):plaf032. doi: 10.1093/aobpla/plaf032. eCollection 2025 Aug.
3
Analysis of synonymous codon usage bias in the chloroplast genome of five Caragana.
BMC Plant Biol. 2025 Mar 13;25(1):322. doi: 10.1186/s12870-025-06351-x.
7
Comparative and Adaptive Analyses of the Complete Chloroplast Genome Diversity in .
Genes (Basel). 2024 Dec 3;15(12):1567. doi: 10.3390/genes15121567.
8
Multiple genotypes of Phelipanche ramosa indicate repeated introduction to the Americas.
Am J Bot. 2025 Jan;112(1):e16456. doi: 10.1002/ajb2.16456. Epub 2025 Jan 6.

本文引用的文献

1
Extensive homologous chloroplast DNA recombination in the pt14 Nicotiana somatic hybrid.
Theor Appl Genet. 1990 Jan;79(1):28-32. doi: 10.1007/BF00223782.
2
Phylogeny and origins of holoparasitism in Orobanchaceae.
Am J Bot. 2013 May;100(5):971-83. doi: 10.3732/ajb.1200448. Epub 2013 Apr 21.
4
Uncovering the protein translocon at the chloroplast inner envelope membrane.
Science. 2013 Feb 1;339(6119):571-4. doi: 10.1126/science.1229262.
6
Plastid genome evolution in mycoheterotrophic Ericaceae.
Plant Mol Biol. 2012 May;79(1-2):5-20. doi: 10.1007/s11103-012-9884-3. Epub 2012 Mar 23.
7
Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis.
Genome Biol Evol. 2011;3:1296-303. doi: 10.1093/gbe/evr102. Epub 2011 Oct 4.
9
Piecing together the puzzle of parasitic plant plastome evolution.
Planta. 2011 Oct;234(4):647-56. doi: 10.1007/s00425-011-1494-9. Epub 2011 Aug 18.
10
Protein translation in Plasmodium parasites.
Trends Parasitol. 2011 Oct;27(10):467-76. doi: 10.1016/j.pt.2011.05.005. Epub 2011 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验