Suppr超能文献

全基因组结合分析转录激活因子理想植物形态 1 揭示了一个复杂的网络调节水稻植物形态。

Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Plant Cell. 2013 Oct;25(10):3743-59. doi: 10.1105/tpc.113.113639. Epub 2013 Oct 29.

Abstract

Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

摘要

理想株型 1(IPA1)对于调控水稻株型至关重要,可显著提高粮食产量。为了阐明其分子基础,我们首先证实 IPA1 是一种功能性转录激活因子,然后通过染色质免疫沉淀测序分析,分别在茎尖和幼穗中鉴定到与 IPA1 结合位点相关的 1067 个和 2185 个基因。Squamosa 启动子结合蛋白盒直接结合核心基序 GTAC 在 IPA1 结合峰中高度富集;有趣的是,通过 IPA1 与增殖细胞核抗原启动子结合因子 1 或启动子结合因子 2 的相互作用,发现了一个以前未被描述的间接结合基序 TGGGCC/T。通过 RNA 测序的全基因组表达谱分析揭示了 IPA1 在多种途径中的作用。此外,我们的研究结果表明,IPA1 可以直接结合水稻的分支 1 启动子,该启动子是分蘖芽生长的负调控因子,从而抑制水稻分蘖,并直接正向调控密集直立穗 1,这是一个重要的调节穗部结构的基因,从而影响株高和穗长。IPA1 全基因组靶基因的阐明将有助于理解植物株型的分子机制,并促进理想株型的优良品种的选育。

相似文献

2
OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice.
Plant Cell. 2019 May;31(5):1026-1042. doi: 10.1105/tpc.19.00023. Epub 2019 Mar 25.
4
The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.
Plant Cell. 2020 Oct;32(10):3124-3138. doi: 10.1105/tpc.20.00289. Epub 2020 Aug 13.
6
Tillering and panicle branching genes in rice.
Gene. 2014 Mar 1;537(1):1-5. doi: 10.1016/j.gene.2013.11.058. Epub 2013 Dec 15.
8
A single transcription factor promotes both yield and immunity in rice.
Science. 2018 Sep 7;361(6406):1026-1028. doi: 10.1126/science.aat7675.
9
MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa).
Plant Mol Biol. 2017 Jul;94(4-5):469-480. doi: 10.1007/s11103-017-0618-4. Epub 2017 May 27.
10
IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice.
Cell Res. 2017 Sep;27(9):1128-1141. doi: 10.1038/cr.2017.102. Epub 2017 Aug 15.

引用本文的文献

1
Antagonistic Ghd7-OsNAC42 Complexes Modulate Carbon and Nitrogen Metabolism to Achieves Superior Quality and High Yield in Rice.
Adv Sci (Weinh). 2025 Aug;12(31):e04163. doi: 10.1002/advs.202504163. Epub 2025 Jun 10.
2
The F-box protein RCN127 enhances rice tillering and grain yield by mediating the degradation of OsTB1 and OsTCP19.
Plant Biotechnol J. 2025 Sep;23(9):3638-3649. doi: 10.1111/pbi.70180. Epub 2025 Jun 9.
3
Molecular and physiological basis of heterosis in hybrid rice performance.
Mol Breed. 2025 May 23;45(6):49. doi: 10.1007/s11032-025-01577-x. eCollection 2025 Jun.
4
Recent advances in improving yield and immunity through transcription factor engineering.
J Integr Plant Biol. 2025 Aug;67(8):2005-2027. doi: 10.1111/jipb.13932. Epub 2025 May 21.
5
6
A DOF transcription factor GLW9/OsDOF25 regulates grain shape and tiller angle in rice.
Plant Biotechnol J. 2025 Jun;23(6):2367-2382. doi: 10.1111/pbi.70064. Epub 2025 Mar 22.
7
PpSPL1 and PpSPL15 inhibit peach branching by increasing strigolactone synthesis.
Planta. 2025 Mar 5;261(4):77. doi: 10.1007/s00425-025-04659-4.
8
GS2 cooperates with IPA1 to control panicle architecture.
New Phytol. 2025 Mar;245(6):2726-2743. doi: 10.1111/nph.20412. Epub 2025 Jan 31.
9
Combining two main functional alleles can increase rice yield.
Front Plant Sci. 2024 Dec 2;15:1505679. doi: 10.3389/fpls.2024.1505679. eCollection 2024.
10
The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice.
Plant Biotechnol J. 2025 Mar;23(3):900-910. doi: 10.1111/pbi.14547. Epub 2024 Dec 16.

本文引用的文献

1
BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis.
Plant Cell. 2013 Apr;25(4):1228-42. doi: 10.1105/tpc.112.109090. Epub 2013 Apr 23.
4
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
Genome Res. 2012 Sep;22(9):1813-31. doi: 10.1101/gr.136184.111.
5
Transcription factors: from enhancer binding to developmental control.
Nat Rev Genet. 2012 Sep;13(9):613-26. doi: 10.1038/nrg3207. Epub 2012 Aug 7.
6
Unraveling the KNOTTED1 regulatory network in maize meristems.
Genes Dev. 2012 Aug 1;26(15):1685-90. doi: 10.1101/gad.193433.112.
7
Control of grain size, shape and quality by OsSPL16 in rice.
Nat Genet. 2012 Jun 24;44(8):950-4. doi: 10.1038/ng.2327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验