Suppr超能文献

共生菌产生的代谢物可促进外周调节性 T 细胞的生成。

Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.

机构信息

1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.

Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.

出版信息

Nature. 2013 Dec 19;504(7480):451-5. doi: 10.1038/nature12726. Epub 2013 Nov 13.

Abstract

Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.

摘要

肠道微生物为多细胞宿主提供营养,并赋予宿主抗感染的能力。促炎和抗炎机制之间的微妙平衡对于肠道免疫稳态至关重要,而这种平衡受到共生微生物群落组成的影响。表达转录因子 Foxp3 的调节性 T 细胞(Treg 细胞)在限制肠道炎症反应中发挥关键作用。尽管已经发现共生微生物群落的特定成员能够增强抗炎 Treg 或促炎辅助性 T 细胞 17(TH17)细胞的产生,但驱动这一过程的分子线索仍然难以捉摸。考虑到共生微生物提供的重要代谢功能,我们推断它们的代谢产物被免疫系统的细胞感知,并影响促炎和抗炎细胞之间的平衡。我们通过探索微生物代谢产物对抗炎 Treg 细胞产生的影响来验证这一假说。我们发现,在小鼠中,短链脂肪酸(SCFA)丁酸是共生微生物在淀粉发酵过程中产生的,促进了 Treg 细胞的胸腺外生成。丁酸给药后 Treg 细胞数量的增加是由于 Treg 细胞胸腺外分化的增强,因为观察到的现象依赖于内含子增强子 CNS1(保守非编码序列 1),该增强子对于胸腺外 Treg 细胞分化是必需的,但对于胸腺 Treg 细胞分化是可有可无的。除丁酸外,另一种源自微生物的 SCFA 丙酸盐也能增强新的 Treg 细胞在周围组织中的生成,丙酸盐具有组蛋白去乙酰化酶(HDAC)抑制作用,但乙酸盐缺乏这种 HDAC 抑制活性,不能增强新的 Treg 细胞在周围组织中的生成。我们的研究结果表明,细菌代谢产物介导共生微生物群与免疫系统之间的通讯,影响促炎和抗炎机制之间的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验