Genomics Research Center and ‡Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529, Taiwan.
J Proteome Res. 2013 Dec 6;12(12):5878-90. doi: 10.1021/pr4008877. Epub 2013 Nov 20.
Pluripotency of embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) and reprograming of somatic cells (SCs) to pluripotency are governed by known and unknown factors. These factors, including protein complexes, are poorly described at the proteome level. Here, we established the quantitative proteomic profiles across three types of cells (iPSCs, ESCs, and SCs) using OFFGEL fractionation coupled with LTQ-Orbitrp analysis. Additionally, we utilized the previously published proteomic profiles of iPSCs, ESCs, and SCs. By integrating these proteomic profiles with protein-protein interaction resources, we identified numerous protein complexes in iPSCs and/or ESCs, which include known and novel chromatin remodeling complexes that facilitate cell reprograming. The identified protein complexes also include the previously unreported ones that are associated with the imperfect aspects of iPSCs or cell reprograming process. Further, we performed a comparison between our study and previously published studies and highlighted a partial conservation of the identified protein complexes across the iPSCs generated by different laboratories and iPS cell-type specific protein complexes. The identified protein complexes were validated by integrated in silico analysis of microarray repository data related to ESCs differentiation into embryoid bodies. A majority of the protein complexes exhibited significant (p < 0.005) co-regulation of their components upon ESC differentiation, suggesting their role in the maintenance of the pluripotent state. Finally, we showed a link between the components of the protein complexes and embryonic development using the existing loss-of-function phenotype data. Together, our integrated approach provides the first comprehensive view of the protein complexes that may have implications for cell reprograming and pluripotency.
胚胎干细胞 (ESCs)/诱导多能干细胞 (iPSCs) 的多能性和体细胞 (SCs) 的重编程为多能性是由已知和未知因素决定的。这些因素,包括蛋白质复合物,在蛋白质组水平上描述得很差。在这里,我们使用 OFFGEL 分馏结合 LTQ-Orbitrp 分析,在三种类型的细胞 (iPSCs、ESCs 和 SCs) 中建立了定量蛋白质组图谱。此外,我们还利用了之前发表的 iPSCs、ESCs 和 SCs 的蛋白质组图谱。通过将这些蛋白质组图谱与蛋白质-蛋白质相互作用资源整合,我们在 iPSCs 和/或 ESCs 中鉴定了许多蛋白质复合物,其中包括已知和新的染色质重塑复合物,这些复合物有助于细胞重编程。鉴定出的蛋白质复合物还包括以前未报道的与 iPSCs 或细胞重编程过程不完善方面相关的复合物。此外,我们对我们的研究和以前发表的研究进行了比较,并强调了不同实验室生成的 iPSCs 之间以及 iPS 细胞类型特异性蛋白质复合物之间鉴定出的蛋白质复合物的部分保守性。通过整合与 ESC 分化为胚状体相关的微阵列库数据的综合计算机分析,对鉴定出的蛋白质复合物进行了验证。大多数蛋白质复合物在 ESC 分化时其成分表现出显著的(p < 0.005)共调控,这表明它们在维持多能状态中的作用。最后,我们使用现有的功能丧失表型数据显示了蛋白质复合物成分与胚胎发育之间的联系。总之,我们的综合方法提供了对可能对细胞重编程和多能性有影响的蛋白质复合物的全面了解。