Suppr超能文献

全球分析 V2 受体拮抗剂 satavaptan 对集合管蛋白磷酸化的影响。

Global analysis of the effects of the V2 receptor antagonist satavaptan on protein phosphorylation in collecting duct.

机构信息

NIH Bldg. 10, Rm. 6N260, 10 Center Dr., Bethesda, MD 20892-1603.

出版信息

Am J Physiol Renal Physiol. 2014 Feb 15;306(4):410-21. doi: 10.1152/ajprenal.00497.2013. Epub 2013 Nov 20.

Abstract

Satavaptan (SR121463) is a vasopressin V2 receptor antagonist that has been shown to improve hyponatremia in patients with cirrhosis, congestive heart failure, and syndrome of inappropriate antidiuresis. While known to inhibit adenylyl cyclase-mediated accumulation of intracellular cyclic AMP and potentially recruit β-arrestin in kidney cell lines, very little is known regarding the signaling pathways that are affected by this drug. To this end, we carried out a global quantitative phosphoproteomic analysis of native rat inner medullary collecting duct cells pretreated with satavaptan or vehicle control followed by the V2 receptor agonist desmopressin (dDAVP) for 0.5, 2, 5, or 15 min. A total of 2,449 unique phosphopeptides from 1,160 proteins were identified. Phosphopeptides significantly changed by satavaptan included many of the same kinases [protein kinase A, phosphoinositide 3-kinase, mitogen-activated protein kinase kinase kinase 7 (TAK1), and calcium/calmodulin-dependent kinase kinase 2] and channels (aquaporin-2 and urea transporter UT-A1) regulated by vasopressin. Time course clustering and kinase motif analysis suggest that satavaptan blocks dDAVP-mediated activation of basophilic kinases, while also blocking dDAVP-mediated inhibition of proline-directed kinases. Satavaptan affects a variety of dDAVP-mediated processes including regulation of cell-cell junctions, actin cytoskeleton dynamics, and signaling through Rho GTPases. These results demonstrate that, overall, satavaptan acts as a selective V2 receptor antagonist and affects many of the same signaling pathways regulated by vasopressin. This study represents the first "systems-wide" analysis of a "vaptan"-class drug and provides a wealth of new data regarding the effects of satavaptan on vasopressin-mediated phosphorylation events.

摘要

沙他伐坦(SR121463)是一种血管加压素 V2 受体拮抗剂,已被证明可改善肝硬化、充血性心力衰竭和抗利尿激素分泌不当综合征患者的低钠血症。尽管已知它可以抑制腺苷酸环化酶介导的细胞内环腺苷酸的积累,并可能在肾细胞系中募集β-arrestin,但对于该药物影响的信号通路知之甚少。为此,我们对用沙他伐坦或载体对照预处理的天然大鼠内髓集合管细胞进行了全局定量磷酸蛋白质组学分析,然后用 V2 受体激动剂去氨加压素(dDAVP)处理 0.5、2、5 或 15 分钟。从 1160 种蛋白质中鉴定出 2449 个独特的磷酸肽。沙他伐坦显著改变的磷酸肽包括许多相同的激酶[蛋白激酶 A、磷酸肌醇 3-激酶、丝裂原活化蛋白激酶激酶激酶 7(TAK1)和钙/钙调蛋白依赖性激酶激酶 2]和通道(水通道蛋白-2 和尿素转运体 UT-A1),这些激酶和通道受血管加压素调节。时程聚类和激酶基序分析表明,沙他伐坦阻断了 dDAVP 介导的碱性磷酸酶的激活,同时也阻断了 dDAVP 介导的脯氨酸定向激酶的抑制。沙他伐坦影响多种 dDAVP 介导的过程,包括细胞-细胞连接、肌动蛋白细胞骨架动力学和 Rho GTPases 的信号转导。这些结果表明,总体而言,沙他伐坦作为一种选择性 V2 受体拮抗剂,作用于许多受血管加压素调节的相同信号通路。这项研究代表了对“vaptan”类药物的首次“系统范围”分析,并提供了大量关于沙他伐坦对血管加压素介导的磷酸化事件影响的新数据。

相似文献

1
Global analysis of the effects of the V2 receptor antagonist satavaptan on protein phosphorylation in collecting duct.
Am J Physiol Renal Physiol. 2014 Feb 15;306(4):410-21. doi: 10.1152/ajprenal.00497.2013. Epub 2013 Nov 20.
2
Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3882-7. doi: 10.1073/pnas.0910646107. Epub 2010 Feb 5.
3
Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics.
Mol Cell Proteomics. 2012 Feb;11(2):M111.014613. doi: 10.1074/mcp.M111.014613. Epub 2011 Nov 21.
4
[Vasopressin receptor antagonists: the vaptans].
Endocrinol Nutr. 2010 May;57 Suppl 2:41-52. doi: 10.1016/S1575-0922(10)70021-8.
5
Phosphoproteomic identification of vasopressin V2 receptor-dependent signaling in the renal collecting duct.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F789-F804. doi: 10.1152/ajprenal.00281.2019. Epub 2019 Jul 17.
6
Phosphoproteomic profiling reveals vasopressin-regulated phosphorylation sites in collecting duct.
J Am Soc Nephrol. 2010 Feb;21(2):303-15. doi: 10.1681/ASN.2009070728. Epub 2010 Jan 14.
7
Vasopressin inhibits apoptosis in renal collecting duct cells.
Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F177-88. doi: 10.1152/ajprenal.00431.2012. Epub 2012 Nov 7.
8
Phosphoproteomic identification of vasopressin-regulated protein kinases in collecting duct cells.
Br J Pharmacol. 2021 Mar;178(6):1426-1444. doi: 10.1111/bph.15352. Epub 2021 Feb 14.
9
Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses.
Cell Commun Signal. 2022 Jun 3;20(1):80. doi: 10.1186/s12964-022-00892-6.
10
Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct.
Am J Physiol. 1996 Apr;270(4 Pt 2):F623-33. doi: 10.1152/ajprenal.1996.270.4.F623.

引用本文的文献

1
Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A-Dependent Signaling in Kidney.
Mol Pharmacol. 2021 May;99(5):358-369. doi: 10.1124/mol.120.119602. Epub 2020 Apr 3.
2
Sequence-based searching of custom proteome and transcriptome databases.
Physiol Rep. 2018 Sep;6(18):e13846. doi: 10.14814/phy2.13846.
3
Rapidity of Correction of Hyponatremia Due to Syndrome of Inappropriate Secretion of Antidiuretic Hormone Following Tolvaptan.
Am J Kidney Dis. 2018 Jun;71(6):772-782. doi: 10.1053/j.ajkd.2017.12.002. Epub 2018 Feb 23.
5
Urea transport and clinical potential of urearetics.
Curr Opin Nephrol Hypertens. 2016 Sep;25(5):444-51. doi: 10.1097/MNH.0000000000000252.
6
Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.
Physiol Genomics. 2016 Feb;48(2):154-66. doi: 10.1152/physiolgenomics.00090.2015. Epub 2015 Oct 27.

本文引用的文献

1
Proteome-wide measurement of protein half-lives and translation rates in vasopressin-sensitive collecting duct cells.
J Am Soc Nephrol. 2013 Nov;24(11):1793-805. doi: 10.1681/ASN.2013030279. Epub 2013 Sep 12.
2
An Efficient Dynamic Programming Algorithm for Phosphorylation Site Assignment of Large-Scale Mass Spectrometry Data.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2012 Oct 4:618-625. doi: 10.1109/BIBMW.2012.6470210.
3
Where vaptans do and do not fit in the treatment of hyponatremia.
Kidney Int. 2013 Apr;83(4):563-7. doi: 10.1038/ki.2012.402. Epub 2012 Dec 19.
4
Vasopressin inhibits apoptosis in renal collecting duct cells.
Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F177-88. doi: 10.1152/ajprenal.00431.2012. Epub 2012 Nov 7.
5
Tolvaptan in patients with autosomal dominant polycystic kidney disease.
N Engl J Med. 2012 Dec 20;367(25):2407-18. doi: 10.1056/NEJMoa1205511. Epub 2012 Nov 3.
6
Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells.
Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1006-20. doi: 10.1152/ajpcell.00260.2012. Epub 2012 Sep 19.
7
Identifying protein kinase target preferences using mass spectrometry.
Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C715-27. doi: 10.1152/ajpcell.00166.2012. Epub 2012 Jun 20.
8
Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6733-8. doi: 10.1073/pnas.1201093109. Epub 2012 Apr 9.
9
iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics.
Mol Cell Proteomics. 2012 Jun;11(6):M111.014423. doi: 10.1074/mcp.M111.014423. Epub 2011 Dec 30.
10
Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics.
Mol Cell Proteomics. 2012 Feb;11(2):M111.014613. doi: 10.1074/mcp.M111.014613. Epub 2011 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验