Suppr超能文献

鸟嘌呤核苷酸交换因子-H1 在补体介导的肾小球上皮细胞 RhoA 激活中的作用。

Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells.

机构信息

From the Department of Medicine, McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada and.

出版信息

J Biol Chem. 2014 Feb 14;289(7):4206-18. doi: 10.1074/jbc.M113.506816. Epub 2013 Dec 19.

Abstract

Visceral glomerular epithelial cells (GEC), also known as podocytes, are vital for the structural and functional integrity of the glomerulus. The actin cytoskeleton plays a central role in maintaining GEC morphology. In a rat model of experimental membranous nephropathy (passive Heymann nephritis (PHN)), complement C5b-9-induced proteinuria was associated with the activation of the actin regulator small GTPase, RhoA. The mechanisms of RhoA activation, however, remained unknown. In this study, we explored the role of the epithelial guanine nucleotide exchange factor, GEF-H1, in complement-induced RhoA activation. Using affinity precipitation to monitor GEF activity, we found that GEF-H1 was activated in glomeruli isolated from rats with PHN. Complement C5b-9 also induced parallel activation of GEF-H1 and RhoA in cultured GEC. In GEC in which GEF-H1 was knocked down, both basal and complement-induced RhoA activity was reduced. On the other hand, GEF-H1 knockdown augmented complement-mediated cytolysis, suggesting a role for GEF-H1 and RhoA in protecting GEC from cell death. The MEK1/2 inhibitor, U0126, and mutation of the ERK-dependent phosphorylation site (T678A) prevented complement-induced GEF-H1 activation, indicating a role for the ERK pathway. Further, complement induced GEF-H1 and microtubule accumulation in the perinuclear region. However, both the perinuclear accumulation and the activation of GEF-H1 were independent of microtubules and myosin-mediated contractility, as shown using drugs that interfere with microtubule dynamics and myosin II activity. In summary, we have identified complement-induced ERK-dependent GEF-H1 activation as the upstream mechanism of RhoA stimulation, and this pathway has a protective role against cell death.

摘要

内脏肾小球上皮细胞(GEC),也称为足细胞,对肾小球的结构和功能完整性至关重要。肌动蛋白细胞骨架在维持 GEC 形态中起着核心作用。在实验性膜性肾病(被动 Heymann 肾炎(PHN))的大鼠模型中,补体 C5b-9 诱导的蛋白尿与肌动蛋白调节剂小 GTP 酶 RhoA 的激活有关。然而,RhoA 激活的机制尚不清楚。在这项研究中,我们探讨了上皮细胞鸟嘌呤核苷酸交换因子 GEF-H1 在补体诱导的 RhoA 激活中的作用。使用亲和沉淀监测 GEF 活性,我们发现 PHN 大鼠肾小球中 GEF-H1 被激活。补体 C5b-9 还诱导培养的 GEC 中 GEF-H1 和 RhoA 的平行激活。在 GEF-H1 被敲低的 GEC 中,基础和补体诱导的 RhoA 活性均降低。另一方面,GEF-H1 敲低增强了补体介导的细胞溶解,表明 GEF-H1 和 RhoA 在保护 GEC 免受细胞死亡方面发挥作用。MEK1/2 抑制剂 U0126 和 ERK 依赖性磷酸化位点(T678A)的突变阻止了补体诱导的 GEF-H1 激活,表明 ERK 途径的作用。此外,补体诱导 GEF-H1 和微管在核周区的积累。然而,GEF-H1 的核周积累和激活都与微管和肌球蛋白介导的收缩性无关,如使用干扰微管动力学和肌球蛋白 II 活性的药物所示。总之,我们已经确定补体诱导的 ERK 依赖性 GEF-H1 激活是 RhoA 刺激的上游机制,该途径在细胞死亡中具有保护作用。

相似文献

1
Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells.
J Biol Chem. 2014 Feb 14;289(7):4206-18. doi: 10.1074/jbc.M113.506816. Epub 2013 Dec 19.
3
Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury.
Am J Physiol Renal Physiol. 2007 Jul;293(1):F148-56. doi: 10.1152/ajprenal.00294.2006. Epub 2007 Mar 20.
4
Activation of the extracellular signal-regulated kinase by complement C5b-9.
Am J Physiol Renal Physiol. 2005 Sep;289(3):F593-603. doi: 10.1152/ajprenal.00066.2005. Epub 2005 Apr 26.
6
Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C387-C402. doi: 10.1152/ajpcell.00088.2024. Epub 2024 Jun 24.
7
Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.
Mol Biol Cell. 2009 Sep;20(18):4070-82. doi: 10.1091/mbc.e09-01-0041. Epub 2009 Jul 22.
8
Spatiotemporal dynamics of GEF-H1 activation controlled by microtubule- and Src-mediated pathways.
J Cell Biol. 2019 Sep 2;218(9):3077-3097. doi: 10.1083/jcb.201812073. Epub 2019 Aug 16.
9
GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
Mol Biol Cell. 2008 May;19(5):2147-53. doi: 10.1091/mbc.e07-12-1269. Epub 2008 Feb 20.

引用本文的文献

1
Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1.
Onco Targets Ther. 2025 Jan 25;18:147-159. doi: 10.2147/OTT.S496228. eCollection 2025.
2
Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction.
Cell Death Dis. 2022 Mar 29;13(3):281. doi: 10.1038/s41419-022-04737-5.
3
Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets.
Am J Pathol. 2020 Jun;190(6):1138-1150. doi: 10.1016/j.ajpath.2020.02.006. Epub 2020 Mar 16.
4
A small molecule screening to detect potential therapeutic targets in human podocytes.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F157-F171. doi: 10.1152/ajprenal.00386.2016. Epub 2016 Oct 19.
5
Podocyte-actin dynamics in health and disease.
Nat Rev Nephrol. 2016 Nov;12(11):692-710. doi: 10.1038/nrneph.2016.127. Epub 2016 Aug 30.
6
Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9.
J Immunol. 2015 Oct 1;195(7):3382-9. doi: 10.4049/jimmunol.1500937. Epub 2015 Aug 31.

本文引用的文献

3
WT1-interacting protein (Wtip) regulates podocyte phenotype by cell-cell and cell-matrix contact reorganization.
Am J Physiol Renal Physiol. 2012 Jan 1;302(1):F103-15. doi: 10.1152/ajprenal.00419.2011. Epub 2011 Sep 7.
4
Activation of RhoA in podocytes induces focal segmental glomerulosclerosis.
J Am Soc Nephrol. 2011 Sep;22(9):1621-30. doi: 10.1681/ASN.2010111146. Epub 2011 Jul 29.
6
Experimental Models of Membranous Nephropathy.
Drug Discov Today Dis Models. 2010 Spring;7(1-2):27-33. doi: 10.1016/j.ddmod.2010.11.001.
9
Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset.
PLoS One. 2010 Jul 12;5(7):e11545. doi: 10.1371/journal.pone.0011545.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验