Suppr超能文献

通过统计降尺度校准 MODIS 气溶胶光学深度以预测每日 PM2.5 浓度。

Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling.

机构信息

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA.

Department of Environmental Health, Emory University, Atlanta, Georgia, USA.

出版信息

J Expo Sci Environ Epidemiol. 2014 Jul;24(4):398-404. doi: 10.1038/jes.2013.90. Epub 2013 Dec 25.

Abstract

There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial-temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003-2005. Via cross-validation experiments, our model had an out-of-sample prediction R(2) of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m(3) between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial-temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined.

摘要

人们越来越关注利用卫星反演的气溶胶光学厚度(AOD)来估算 PM2.5(空气动力学直径小于 2.5μm 的颗粒物)的环境浓度。卫星数据具有广泛的空间覆盖范围,可以增加空气质量数据的时空可用性,超越地面监测测量,并有可能改善基于人群的健康研究中的暴露评估。本文描述了一种统计降尺度方法,该方法结合了(1)利用 AOD 的 PM2.5 土地利用回归模型的最新进展,以及(2)用于合并具有不同空间分辨率的空气质量数据集的统计数据融合技术。统计降尺度假设 AOD 和 PM2.5 浓度之间的关联在空间和时间上是依赖的,并提供了两个关键优势。首先,它使我们能够使用网格化的 AOD 数据来预测空间点位置的 PM2.5 浓度。其次,统一的层次框架为预测的 PM2.5 浓度提供了直接的不确定性量化。所提出的方法应用于 2003-2005 年期间美国东南部的每日 AOD 值数据集。通过交叉验证实验,我们的模型在观测到的和预测的每日 PM2.5 浓度之间具有 0.78 的样本外预测 R2 和 3.61μg/m3 的均方根误差(RMSE)。与没有 AOD 作为预测因子的相同土地利用回归模型相比,RMSE 降低了 10%。还检查了没有监测 PM2.5 测量的位置和日期的时空插值的预测性能。

相似文献

1
Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling.
J Expo Sci Environ Epidemiol. 2014 Jul;24(4):398-404. doi: 10.1038/jes.2013.90. Epub 2013 Dec 25.
3
A Bayesian Downscaler Model to Estimate Daily PM Levels in the Conterminous US.
Int J Environ Res Public Health. 2018 Sep 13;15(9):1999. doi: 10.3390/ijerph15091999.
4
Estimating ground-level PM2.5 in China using satellite remote sensing.
Environ Sci Technol. 2014 Jul 1;48(13):7436-44. doi: 10.1021/es5009399. Epub 2014 Jun 13.
6
Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD.
Environ Sci Pollut Res Int. 2016 May;23(9):8327-38. doi: 10.1007/s11356-015-6027-9. Epub 2016 Jan 16.
8
Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City.
Environ Sci Technol. 2015 Jul 21;49(14):8576-84. doi: 10.1021/acs.est.5b00859. Epub 2015 Jun 26.
9
A gap-filling hybrid approach for hourly PM prediction at high spatial resolution from multi-sourced AOD data.
Environ Pollut. 2022 Dec 15;315:120419. doi: 10.1016/j.envpol.2022.120419. Epub 2022 Oct 19.
10
Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011.
J Expo Sci Environ Epidemiol. 2016 Jun;26(4):377-84. doi: 10.1038/jes.2015.41. Epub 2015 Jun 17.

引用本文的文献

1
COVID-19 strict lockdown impact on urban air quality and atmospheric temperature in four megacities of India.
Geosci Front. 2022 Nov;13(6):101368. doi: 10.1016/j.gsf.2022.101368. Epub 2022 Feb 9.
2
Monitoring vs. modeled exposure data in time-series studies of ambient air pollution and acute health outcomes.
J Expo Sci Environ Epidemiol. 2023 May;33(3):377-385. doi: 10.1038/s41370-022-00446-5. Epub 2022 May 20.
3
A machine learning model to estimate ambient PM concentrations in industrialized highveld region of South Africa.
Remote Sens Environ. 2021 Dec 1;266. doi: 10.1016/j.rse.2021.112713. Epub 2021 Sep 23.
4
Statistical downscaling with spatial misalignment: Application to wildland fire PM concentration forecasting.
J Agric Biol Environ Stat. 2021 Mar 1;26(1):23-44. doi: 10.1007/s13253-020-00420-4.
5
Have any effect of COVID-19 lockdown on environmental sustainability? A study from most polluted metropolitan area of India.
Stoch Environ Res Risk Assess. 2022;36(1):283-295. doi: 10.1007/s00477-021-02019-8. Epub 2021 Apr 8.
7
Satellite-Based Daily PM Estimates During Fire Seasons in Colorado.
J Geophys Res Atmos. 2018 Aug 16;123(15):8159-8171. doi: 10.1029/2018JD028573. Epub 2018 Jul 13.
8
A Bayesian Downscaler Model to Estimate Daily PM Levels in the Conterminous US.
Int J Environ Res Public Health. 2018 Sep 13;15(9):1999. doi: 10.3390/ijerph15091999.
10
Estimating daily PM and PM across the complex geo-climate region of Israel using MAIAC satellite-based AOD data.
Atmos Environ (1994). 2015 Dec;122:409-416. doi: 10.1016/j.atmosenv.2015.10.004. Epub 2015 Oct 8.

本文引用的文献

1
Acute and chronic effects of particles on hospital admissions in New-England.
PLoS One. 2012;7(4):e34664. doi: 10.1371/journal.pone.0034664. Epub 2012 Apr 17.
2
Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH.
Aerosol Sci Technol. 2011 Sep;45(9):1090-1108. doi: 10.1080/02786826.2011.581256.
3
Time-to-event analysis of fine particle air pollution and preterm birth: results from North Carolina, 2001-2005.
Am J Epidemiol. 2012 Jan 15;175(2):91-8. doi: 10.1093/aje/kwr403. Epub 2011 Dec 13.
4
Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution.
Environ Sci Technol. 2012 Jan 17;46(2):652-60. doi: 10.1021/es2025752. Epub 2012 Jan 6.
5
A bivariate space-time downscaler under space and time misalignment.
Ann Appl Stat. 2010 Dec 1;4(4):1942-1975. doi: 10.1214/10-aoas351.
6
Does more accurate exposure prediction necessarily improve health effect estimates?
Epidemiology. 2011 Sep;22(5):680-5. doi: 10.1097/EDE.0b013e3182254cc6.
7
Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.
Biostatistics. 2011 Oct;12(4):637-52. doi: 10.1093/biostatistics/kxr002. Epub 2011 Feb 5.
8
Efficient measurement error correction with spatially misaligned data.
Biostatistics. 2011 Oct;12(4):610-23. doi: 10.1093/biostatistics/kxq083. Epub 2011 Jan 20.
9
Ambient air pollution and birth weight in full-term infants in Atlanta, 1994-2004.
Environ Health Perspect. 2011 May;119(5):731-7. doi: 10.1289/ehp.1002785. Epub 2010 Dec 14.
10
A Spatio-Temporal Downscaler for Output From Numerical Models.
J Agric Biol Environ Stat. 2010 Jun 1;15(2):176-197. doi: 10.1007/s13253-009-0004-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验