Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA.
Department of Environmental Health, Emory University, Atlanta, Georgia, USA.
J Expo Sci Environ Epidemiol. 2014 Jul;24(4):398-404. doi: 10.1038/jes.2013.90. Epub 2013 Dec 25.
There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial-temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003-2005. Via cross-validation experiments, our model had an out-of-sample prediction R(2) of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m(3) between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial-temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined.
人们越来越关注利用卫星反演的气溶胶光学厚度(AOD)来估算 PM2.5(空气动力学直径小于 2.5μm 的颗粒物)的环境浓度。卫星数据具有广泛的空间覆盖范围,可以增加空气质量数据的时空可用性,超越地面监测测量,并有可能改善基于人群的健康研究中的暴露评估。本文描述了一种统计降尺度方法,该方法结合了(1)利用 AOD 的 PM2.5 土地利用回归模型的最新进展,以及(2)用于合并具有不同空间分辨率的空气质量数据集的统计数据融合技术。统计降尺度假设 AOD 和 PM2.5 浓度之间的关联在空间和时间上是依赖的,并提供了两个关键优势。首先,它使我们能够使用网格化的 AOD 数据来预测空间点位置的 PM2.5 浓度。其次,统一的层次框架为预测的 PM2.5 浓度提供了直接的不确定性量化。所提出的方法应用于 2003-2005 年期间美国东南部的每日 AOD 值数据集。通过交叉验证实验,我们的模型在观测到的和预测的每日 PM2.5 浓度之间具有 0.78 的样本外预测 R2 和 3.61μg/m3 的均方根误差(RMSE)。与没有 AOD 作为预测因子的相同土地利用回归模型相比,RMSE 降低了 10%。还检查了没有监测 PM2.5 测量的位置和日期的时空插值的预测性能。