Hussein-Al-Ali Samer Hasan, Arulselvan Palanisamy, Fakurazi Sharida, Hussein Mohd Zobir, Dorniani Dena
Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Malaysia.
Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Malaysia.
J Biomater Appl. 2014 Aug;29(2):186-198. doi: 10.1177/0885328213519691. Epub 2014 Jan 19.
Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg-CS-MNP and Arg-PEG-MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg-CS-MNP and Arg-PEG-MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV-vis measurements, which yielded values of 5.5% and 11% for the Arg-CS-MNP and Arg-PEG-MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg-CS-MNP and Arg-PEG-MNP nanocomposites reduced the cancer cell viability with IC values of 48.6 and 42.6 µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells.
氧化铁磁性纳米颗粒(MNPs)可用于局部癌症治疗的靶向给药系统。涂有生物相容性聚合物的MNPs可用于递送抗癌药物。通过共沉淀法合成氧化铁MNPs,然后分别用壳聚糖(CS)或聚乙二醇(PEG)包覆,形成CS-MNPs和PEG-MNPs。将精氨酸(Arg)负载到两种包覆纳米颗粒上,形成Arg-CS-MNP和Arg-PEG-MNP纳米复合材料。MNPs以及Arg-CS-MNP和Arg-PEG-MNP纳米复合材料的X射线衍射结果表明,氧化铁含有纯磁铁矿。通过热重分析估算与MNPs结合的CS和PEG的量,并通过傅里叶变换红外光谱分析进行确认。使用紫外可见光谱测量估算Arg的负载量,结果表明Arg-CS-MNP和Arg-PEG-MNP纳米复合材料的负载量分别为5.5%和11%。Arg从纳米复合材料中的释放曲线遵循准二级动力学模型。在人宫颈癌细胞(HeLa)、小鼠胚胎成纤维细胞(3T3)和乳腺腺癌细胞(MCF-7)中评估了MNPs、Arg-CS-MNPs和Arg-PEG-MNPs的细胞毒性作用。结果表明,MNPs、Arg-CS-MNPs和Arg-PEG-MNPs对3T3和HeLa细胞无细胞毒性。然而,用Arg-CS-MNP和Arg-PEG-MNP纳米复合材料处理MCF-7细胞可降低癌细胞活力,IC值分别为48.6和42.6μg/mL,而MNPs和游离Arg对MCF-7细胞的活力没有影响。