Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
ACS Nano. 2014 Feb 25;8(2):1690-8. doi: 10.1021/nn4060489. Epub 2014 Jan 23.
Understanding the molecular mechanisms of bacterial adhesion and biofilm formation is an important topic in current microbiology and a key in nanomedicine for developing new antibacterial strategies. There is growing evidence that the production of extracellular polymeric substances at the cell-substrate interface plays a key role in strengthening bacterial adhesion. Yet, because these adhesive polymers are available in small amounts and are localized at interfaces, they are difficult to study using traditional techniques. Here, we use single-molecule atomic force microscopy (AFM) to functionally analyze the biophysical properties (distribution, adhesion, and extension) of bacterial footprints, that is, adhesive macromolecules left on substrate surfaces after removal of the attached cells. We focus on the large adhesin protein LapA from Pseudomonas fluorescens, which mediates cell attachment to a wide diversity of surfaces. Using AFM tips functionalized with specific antibodies, we demonstrate that adhesion of bacteria to hydrophobic substrates leads to the active accumulation of the LapA protein at the cell-substrate interface. We show that single LapA proteins left on the substrate after cell detachment localize into microscale domains corresponding to the bacterial size and exhibit multiple adhesion peaks reflecting the adhesion and extension of adsorbed LapA proteins. The mechanical behavior of LapA-based footprints makes them ideally suited to function as multipurpose bridging polymers, enabling P. fluorescens to attach to various surfaces. Our experiments show that single-molecule AFM offers promising prospects for characterizing the biophysics and dynamics of the cell-substrate interface in the context of bacterial adhesion, on a scale that was not accessible before.
了解细菌黏附与生物膜形成的分子机制是当前微生物学的一个重要课题,也是开发新型抗菌策略的纳米医学的关键。越来越多的证据表明,细胞-基底界面处细胞外聚合物质的产生在增强细菌黏附中起着关键作用。然而,由于这些黏附聚合物的含量很少,且局部定位于界面处,因此使用传统技术对其进行研究具有一定的难度。在这里,我们使用单分子原子力显微镜(AFM)对细菌足迹的生物物理特性(分布、黏附及延伸)进行了功能分析,即细菌从附着的细胞上脱离后,留在基底表面上的黏附性大分子。我们重点研究了荧光假单胞菌中较大的黏附蛋白 LapA,该蛋白介导了细胞与各种表面的附着。通过使用特异性抗体功能化的 AFM 针尖,我们证明了细菌与疏水性基底的黏附会导致 LapA 蛋白在细胞-基底界面处的主动聚集。我们发现,在细胞脱离基底后,仍有单个 LapA 蛋白留在基底上,这些蛋白会在基底上局部形成与细菌大小相对应的微尺度区域,并表现出多个黏附峰,这反映了吸附的 LapA 蛋白的黏附和延伸。基于 LapA 的足迹的力学行为使其非常适合作为多功能桥接聚合物,使荧光假单胞菌能够附着于各种表面。我们的实验表明,单分子 AFM 为在细菌黏附的背景下对细胞-基底界面的生物物理和动力学进行特征分析提供了有前景的方法,其尺度在以前是无法达到的。