Suppr超能文献

应激信号通路的激活增强了真菌对化学杀真菌剂和抗真菌蛋白的耐受性。

Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.

机构信息

La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.

出版信息

Cell Mol Life Sci. 2014 Jul;71(14):2651-66. doi: 10.1007/s00018-014-1573-8. Epub 2014 Feb 14.

Abstract

Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.

摘要

真菌疾病是农业和人类健康中日益严重的问题。人类真菌感染的治疗涉及使用化学杀真菌剂,这些杀真菌剂通常针对真菌质膜或细胞壁的完整性。用于治疗植物病害的化学杀真菌剂具有更多不同的作用机制,包括抑制固醇生物合成、微管组装和线粒体呼吸链。然而,这些治疗方法存在局限性,包括毒性和耐药性的出现。这导致人们越来越关注使用抗菌肽来治疗植物和人类的真菌感染。抗菌肽是一组具有不同作用机制的多样化分子,其中许多分子的作用机制仍知之甚少。此外,越来越明显的是,应激反应途径参与了真菌对化学杀真菌剂和抗菌肽的耐受性。这些信号通路,如细胞壁完整性和高渗甘油途径,是由细胞壁不稳定、渗透压变化和活性氧产生等刺激触发的。在这里,我们综述了用化学杀真菌剂和抗真菌肽处理真菌所诱导的应激信号。这些途径的研究不仅深入了解了这些分子如何发挥其抗真菌作用,还深入了解了真菌耐受这些分子亚致死处理的机制。失活应激反应途径代表了提高抗真菌分子疗效的一种潜在方法。

相似文献

1
Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.
Cell Mol Life Sci. 2014 Jul;71(14):2651-66. doi: 10.1007/s00018-014-1573-8. Epub 2014 Feb 14.
2
Can agricultural fungicides accelerate the discovery of human antifungal drugs?
Drug Discov Today. 2015 Jan;20(1):7-10. doi: 10.1016/j.drudis.2014.08.010. Epub 2014 Aug 27.
3
Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.
J Agric Food Chem. 2015 Sep 2;63(34):7463-8. doi: 10.1021/acs.jafc.5b02728. Epub 2015 Aug 25.
4
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis.
Int J Mol Sci. 2021 Dec 9;22(24):13261. doi: 10.3390/ijms222413261.
7
Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review.
Braz J Microbiol. 2016 Oct-Dec;47(4):793-799. doi: 10.1016/j.bjm.2016.06.006. Epub 2016 Jul 7.
9
ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.
Afr J Tradit Complement Altern Med. 2016 Jul 3;13(4):216-222. doi: 10.21010/ajtcam.v13i4.28. eCollection 2016.
10

引用本文的文献

1
Antifungal persistence: Clinical relevance and mechanisms.
PLoS Pathog. 2025 Sep 11;21(9):e1013456. doi: 10.1371/journal.ppat.1013456. eCollection 2025 Sep.
2
Antifungal resistance: Emerging mechanisms and implications (Review).
Mol Med Rep. 2025 Sep;32(3). doi: 10.3892/mmr.2025.13612. Epub 2025 Jul 11.
3
Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2023 Nov;107(22):6811-6829. doi: 10.1007/s00253-023-12749-0. Epub 2023 Sep 9.
5
Biological Control of by the Yeast In Vitro and on Tomato Fruit.
Plants (Basel). 2023 Jan 4;12(2):236. doi: 10.3390/plants12020236.
6
Recommended rates of azoxystrobin and tebuconazole seem to be environmentally safe but ineffective against target fungi.
Ecotoxicology. 2023 Jan;32(1):102-113. doi: 10.1007/s10646-023-02619-w. Epub 2023 Jan 18.
7
The importance of antimicrobial resistance in medical mycology.
Nat Commun. 2022 Sep 12;13(1):5352. doi: 10.1038/s41467-022-32249-5.
8
Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi.
J Fungi (Basel). 2022 Apr 23;8(5):435. doi: 10.3390/jof8050435.
9
Envisaging Antifungal Potential of Histatin 5: A Physiological Salivary Peptide.
J Fungi (Basel). 2021 Dec 12;7(12):1070. doi: 10.3390/jof7121070.

本文引用的文献

3
Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans.
Antimicrob Agents Chemother. 2013 Aug;57(8):3667-75. doi: 10.1128/AAC.00365-13. Epub 2013 May 20.
5
Properties and mechanisms of action of naturally occurring antifungal peptides.
Cell Mol Life Sci. 2013 Oct;70(19):3545-70. doi: 10.1007/s00018-013-1260-1. Epub 2013 Feb 5.
6
Response to hyperosmotic stress.
Genetics. 2012 Oct;192(2):289-318. doi: 10.1534/genetics.112.140863.
7
The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans.
Mol Microbiol. 2012 Apr;84(1):166-80. doi: 10.1111/j.1365-2958.2012.08017.x. Epub 2012 Mar 5.
9
The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans.
Front Microbiol. 2011 Mar 16;2:47. doi: 10.3389/fmicb.2011.00047. eCollection 2011.
10
Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans.
Eukaryot Cell. 2011 Aug;10(8):1071-81. doi: 10.1128/EC.05011-11. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验