Lee Junmin, Abdeen Amr A, Huang Tiffany H, Kilian Kristopher A
Department of Materials Science and Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Department of Materials Science and Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
J Mech Behav Biomed Mater. 2014 Oct;38:209-18. doi: 10.1016/j.jmbbm.2014.01.009. Epub 2014 Jan 27.
The physical properties of the extracellular matrix (ECM) play an important role in regulating tissue-specific human mesenchymal stem cell (MSC) differentiation. Protein-coated hydrogels with tunable stiffness have been shown to influence lineage specific gene expression in MSCs. In addition, the control of cell shape - either through changing substrate stiffness or restricting spreading with micropatterning - has proved to be important in guiding the differentiation of MSCs. However, few studies have explored the interplay between these physical cues during MSC lineage specification. Here, we demonstrate geometric control of osteogenesis in MSCs cultured on micropatterned polyacrylamide gels. Cells cultured on fibronectin-coated gels express markers associated with osteogenesis in a stiffness dependent fashion with a maximum at ~30kPa. Controlling the geometry of single cells across the substrate demonstrates elevated osteogenesis when cells are confined to shapes that promote increased cytoskeletal tension. Patterning MSCs across hydrogels of variable stiffness will enable the exploration of the interplay between these physical cues and their relationship with the mechanochemical signals that guide stem cell fate decisions.
细胞外基质(ECM)的物理特性在调节组织特异性人骨髓间充质干细胞(MSC)分化中起着重要作用。具有可调硬度的蛋白质包被水凝胶已被证明会影响MSC中的谱系特异性基因表达。此外,通过改变底物硬度或用微图案限制铺展来控制细胞形状,已被证明在引导MSC分化中很重要。然而,很少有研究探讨这些物理信号在MSC谱系特化过程中的相互作用。在这里,我们展示了在微图案化聚丙烯酰胺凝胶上培养的MSC中成骨的几何控制。在纤连蛋白包被的凝胶上培养的细胞以刚度依赖的方式表达与成骨相关的标志物,在~30kPa时达到最大值。当细胞被限制在促进细胞骨架张力增加的形状时,控制单个细胞在整个底物上的几何形状可显示出增强的成骨作用。在可变硬度的水凝胶上对MSC进行图案化将有助于探索这些物理信号之间的相互作用以及它们与指导干细胞命运决定的机械化学信号的关系。