Suppr超能文献

气孔大小、速度和响应能力会影响光合作用和水分利用效率。

Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency.

作者信息

Lawson Tracy, Blatt Michael R

机构信息

School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.

出版信息

Plant Physiol. 2014 Apr;164(4):1556-70. doi: 10.1104/pp.114.237107. Epub 2014 Feb 27.

Abstract

The control of gaseous exchange between the leaf and bulk atmosphere by stomata governs CO₂ uptake for photosynthesis and transpiration, determining plant productivity and water use efficiency. The balance between these two processes depends on stomatal responses to environmental and internal cues and the synchrony of stomatal behavior relative to mesophyll demands for CO₂. Here we examine the rapidity of stomatal responses with attention to their relationship to photosynthetic CO₂ uptake and the consequences for water use. We discuss the influence of anatomical characteristics on the velocity of changes in stomatal conductance and explore the potential for manipulating the physical as well as physiological characteristics of stomatal guard cells in order to accelerate stomatal movements in synchrony with mesophyll CO₂ demand and to improve water use efficiency without substantial cost to photosynthetic carbon fixation. We conclude that manipulating guard cell transport and metabolism is just as, if not more likely to yield useful benefits as manipulations of their physical and anatomical characteristics. Achieving these benefits should be greatly facilitated by quantitative systems analysis that connects directly the molecular properties of the guard cells to their function in the field.

摘要

气孔对叶片与大气间气体交换的控制,决定了光合作用中二氧化碳的吸收以及蒸腾作用,从而决定了植物的生产力和水分利用效率。这两个过程之间的平衡取决于气孔对环境和内部信号的响应,以及气孔行为与叶肉细胞对二氧化碳需求的同步性。在此,我们研究气孔响应的快速性,关注其与光合二氧化碳吸收的关系以及对水分利用的影响。我们讨论解剖学特征对气孔导度变化速度的影响,并探索操纵气孔保卫细胞物理及生理特征的潜力,以便加速气孔运动与叶肉细胞对二氧化碳的需求同步,提高水分利用效率,同时不对光合碳固定造成重大代价。我们得出结论,操纵保卫细胞的运输和代谢,即便不比操纵其物理和解剖学特征更有可能带来有益效果,至少也同样有可能。通过直接将保卫细胞的分子特性与其在田间功能联系起来的定量系统分析,应能极大地促进实现这些益处。

相似文献

1
Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency.
Plant Physiol. 2014 Apr;164(4):1556-70. doi: 10.1104/pp.114.237107. Epub 2014 Feb 27.
2
Speedy stomata, photosynthesis and plant water use efficiency.
New Phytol. 2019 Jan;221(1):93-98. doi: 10.1111/nph.15330. Epub 2018 Jul 10.
3
Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour.
New Phytol. 2014 Sep;203(4):1064-1081. doi: 10.1111/nph.12945.
4
Guard Cell Metabolism and Stomatal Function.
Annu Rev Plant Biol. 2020 Apr 29;71:273-302. doi: 10.1146/annurev-arplant-050718-100251. Epub 2020 Mar 10.
6
The influence of stomatal morphology and distribution on photosynthetic gas exchange.
Plant J. 2020 Feb;101(4):768-779. doi: 10.1111/tpj.14560. Epub 2019 Nov 10.
7
Guard cell endomembrane Ca-ATPases underpin a 'carbon memory' of photosynthetic assimilation that impacts on water-use efficiency.
Nat Plants. 2021 Sep;7(9):1301-1313. doi: 10.1038/s41477-021-00966-2. Epub 2021 Jul 29.
8
Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.
J Exp Bot. 2008;59(12):3317-25. doi: 10.1093/jxb/ern185. Epub 2008 Jul 22.
9
Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency.
New Phytol. 2016 Sep;211(4):1209-20. doi: 10.1111/nph.14000. Epub 2016 May 23.
10
Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.
Plant Physiol. 2017 Jun;174(2):614-623. doi: 10.1104/pp.17.00152. Epub 2017 Apr 17.

引用本文的文献

2
Adaptability of Foxtail Millet Varieties Based on Photosynthetic Performance and Agronomic Traits.
Plants (Basel). 2025 Aug 12;14(16):2502. doi: 10.3390/plants14162502.
7
Advancements in Water-Saving Strategies and Crop Adaptation to Drought: A Comprehensive Review.
Physiol Plant. 2025 Jul-Aug;177(4):e70332. doi: 10.1111/ppl.70332.
8
Potassium-Mediated Variations in the Photosynthetic Induction Characteristics of L.
Plants (Basel). 2025 May 26;14(11):1623. doi: 10.3390/plants14111623.
9
High-precision lighting for plants: monochromatic red laser diodes outperform LEDs in photosynthesis and plant growth.
Front Plant Sci. 2025 May 20;16:1589279. doi: 10.3389/fpls.2025.1589279. eCollection 2025.
10
Comprehensive genome-wide identification and expression analysis of the EPF/EPFL gene family in oat.
BMC Genomics. 2025 Jun 2;26(1):551. doi: 10.1186/s12864-025-11585-y.

本文引用的文献

1
Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms.
New Phytol. 2004 Jun;162(3):663-670. doi: 10.1111/j.1469-8137.2004.01060.x.
4
Characterisation of HvALMT1 function in transgenic barley plants.
Funct Plant Biol. 2011 Feb;38(2):163-175. doi: 10.1071/FP10140.
8
Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency.
Plant Physiol. 2014 Apr;164(4):1593-9. doi: 10.1104/pp.113.233403. Epub 2014 Mar 4.
9
Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+.
Plant J. 2014 Apr;78(2):203-14. doi: 10.1111/tpj.12471. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验