Suppr超能文献

实施21世纪毒性测试(TT21C):利用毒性途径做出安全决策及原型风险评估进展

Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment.

作者信息

Adeleye Yeyejide, Andersen Melvin, Clewell Rebecca, Davies Michael, Dent Matthew, Edwards Sue, Fowler Paul, Malcomber Sophie, Nicol Beate, Scott Andrew, Scott Sharon, Sun Bin, Westmoreland Carl, White Andrew, Zhang Qiang, Carmichael Paul L

机构信息

Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.

The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709-2137, USA.

出版信息

Toxicology. 2015 Jun 5;332:102-11. doi: 10.1016/j.tox.2014.02.007. Epub 2014 Feb 25.

Abstract

Risk assessment methodologies in toxicology have remained largely unchanged for decades. The default approach uses high dose animal studies, together with human exposure estimates, and conservative assessment (uncertainty) factors or linear extrapolations to determine whether a specific chemical exposure is 'safe' or 'unsafe'. Although some incremental changes have appeared over the years, results from all new approaches are still judged against this process of extrapolating high-dose effects in animals to low-dose exposures in humans. The US National Research Council blueprint for change, entitled Toxicity Testing in the 21st Century: A Vision and Strategy called for a transformation of toxicity testing from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. More recently, this concept of pathways-based approaches to risk assessment has been expanded by the description of 'Adverse Outcome Pathways' (AOPs). The question, however, has been how to translate this AOP/TT21C vision into the practical tools that will be useful to those expected to make safety decisions. We have sought to provide a practical example of how the TT21C vision can be implemented to facilitate a safety assessment for a commercial chemical without the use of animal testing. To this end, the key elements of the TT21C vision have been broken down to a set of actions that can be brought together to achieve such a safety assessment. Such components of a pathways-based risk assessment have been widely discussed, however to-date, no worked examples of the entire risk assessment process exist. In order to begin to test the process, we have taken the approach of examining a prototype toxicity pathway (DNA damage responses mediated by the p53 network) and constructing a strategy for the development of a pathway based risk assessment for a specific chemical in a case study mode. This contribution represents a 'work-in-progress' and is meant to both highlight concepts that are well-developed and identify aspects of the overall process which require additional development. To guide our understanding of what a pathways-based risk assessment could look like in practice, we chose to work on a case study chemical (quercetin) with a defined human exposure and to bring a multidisciplinary team of chemists, biologists, modellers and risk assessors to work together towards a safety assessment. Our goal was to see if the in vitro dose response for quercetin could be sufficiently understood to construct a TT21C risk assessment without recourse to rodent carcinogenicity study data. The data presented include high throughput pathway biomarkers (p-H2AX, p-ATM, p-ATR, p-Chk2, p53, p-p53, MDM2 and Wip1) and markers of cell-cycle, apoptosis and micronuclei formation, plus gene transcription in HT1080 cells. Eighteen point dose response curves were generated using flow cytometry and imaging to determine the concentrations that resulted in significant perturbation. NOELs and BMDs were compared to the output from biokinetic modelling and the potential for in vitro to in vivo extrapolation explored. A first tier risk assessment was performed comparing the total quercetin concentration in the in vitro systems with the predicted total quercetin concentration in plasma and tissues. The shortcomings of this approach and recommendations for improvement are described. This paper therefore describes the current progress in an ongoing research effort aimed at providing a pathways-based, proof-of-concept in vitro-only safety assessment for a consumer use product.

摘要

几十年来,毒理学中的风险评估方法基本没有变化。默认方法是使用高剂量动物研究,结合人体暴露估计,以及保守评估(不确定性)因素或线性外推法,来确定特定化学物质暴露是“安全”还是“不安全”。尽管多年来出现了一些渐进的变化,但所有新方法的结果仍根据将动物高剂量效应外推至人类低剂量暴露的这一过程来判断。美国国家研究委员会的变革蓝图《21世纪毒性测试:愿景与战略》呼吁将毒性测试从基于实验动物高剂量研究的系统转变为主要基于体外方法的系统,该体外方法使用与人类相关的细胞或组织来评估正常细胞信号通路的变化。最近,“不良结局途径”(AOP)的描述扩展了这种基于途径的风险评估概念。然而,问题在于如何将这种AOP/TT21C愿景转化为对那些需要做出安全决策的人有用的实用工具。我们试图提供一个实际例子,说明如何实施TT21C愿景,以便在不使用动物试验的情况下对一种商用化学品进行安全评估。为此,TT21C愿景的关键要素已被分解为一组可整合起来以实现这种安全评估的行动。基于途径的风险评估的此类组成部分已得到广泛讨论,然而,迄今为止,不存在整个风险评估过程的实际示例。为了开始测试该过程,我们采取的方法是研究一个原型毒性途径(由p53网络介导的DNA损伤反应),并在案例研究模式下为一种特定化学品构建基于途径的风险评估策略。这一成果代表了“正在进行的工作”,旨在既突出已充分发展的概念,又识别整个过程中需要进一步发展的方面。为了指导我们理解基于途径的风险评估在实际中可能是什么样的,我们选择针对一种具有明确人体暴露的案例研究化学品(槲皮素)开展工作,并召集了一个由化学家、生物学家、建模人员和风险评估人员组成的多学科团队,共同进行安全评估。我们的目标是看看是否能够充分理解槲皮素的体外剂量反应,从而在不借助啮齿动物致癌性研究数据的情况下构建一个TT21C风险评估。所呈现的数据包括高通量途径生物标志物(磷酸化组蛋白H2AX、磷酸化共济失调毛细血管扩张突变蛋白、磷酸化Rad3相关蛋白、磷酸化Chk2、p53、磷酸化p53、小鼠双微体2和Wip1)以及细胞周期、细胞凋亡和微核形成的标志物,外加HT1080细胞中的基因转录。使用流式细胞术和成像技术生成了18个点的剂量反应曲线,以确定导致显著扰动的浓度。将无观察到有害作用水平(NOEL)和基准剂量(BMD)与生物动力学建模的输出结果进行比较,并探讨体外到体内外推的可能性。进行了一级风险评估,将体外系统中槲皮素的总浓度与血浆和组织中预测的槲皮素总浓度进行比较。描述了这种方法的缺点及改进建议。因此,本文描述了一项正在进行的研究工作的当前进展,该研究旨在为一种消费品提供基于途径的、仅在体外的概念验证安全评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验