Suppr超能文献

在受到双轴拉伸的小梁网细胞中,不依赖mTOR的自噬诱导作用

MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch.

作者信息

Porter Kristine M, Jeyabalan Nallathambi, Liton Paloma B

机构信息

Duke University, Department of Ophthalmology, Durham, NC, USA.

Duke University, Department of Ophthalmology, Durham, NC, USA.

出版信息

Biochim Biophys Acta. 2014 Jun;1843(6):1054-62. doi: 10.1016/j.bbamcr.2014.02.010. Epub 2014 Feb 26.

Abstract

The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20% elongation), as well as in high-pressure perfused eyes (30mmHg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces.

摘要

小梁网(TM)是控制房水从眼房水流出的复杂组织的一部分,因此有助于维持眼压(IOP)。由于眼压随压力梯度和液体流动的变化而变化,小梁网及其所含细胞会发生形态变形,导致扩张和拉伸。因此,小梁网细胞必须持续检测并响应这些机械力,并调整其生理状态以维持适当的细胞功能并防止机械损伤。在这里,我们证明了自噬的激活,自噬是一种负责降解长寿蛋白和细胞器的促生存途径,在小梁网细胞受到双轴静态拉伸(伸长20%)时以及在高压灌注眼(30mmHg)中均有发生。在拉伸细胞中发现的自噬的形态学和生化标志物包括LC3-II水平升高、自噬通量增加以及电子显微镜照片中存在自噬体。此外,我们的结果表明,小梁网细胞中拉伸诱导的自噬以不依赖MTOR和BAG3的方式发生。我们假设自噬的激活是生理反应的一部分,使小梁网细胞能够应对和适应机械力。

相似文献

1
MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch.
Biochim Biophys Acta. 2014 Jun;1843(6):1054-62. doi: 10.1016/j.bbamcr.2014.02.010. Epub 2014 Feb 26.
3
Autophagy and mechanotransduction in outflow pathway cells.
Exp Eye Res. 2017 May;158:146-153. doi: 10.1016/j.exer.2016.06.021. Epub 2016 Jun 29.
6
Effects of mechanical stretching on trabecular matrix metalloproteinases.
Invest Ophthalmol Vis Sci. 2001 Jun;42(7):1505-13.
7
Autophagic dysregulation in glaucomatous trabecular meshwork cells.
Biochim Biophys Acta. 2015 Mar;1852(3):379-85. doi: 10.1016/j.bbadis.2014.11.021. Epub 2014 Dec 4.
8
Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork.
Exp Eye Res. 2017 May;158:67-72. doi: 10.1016/j.exer.2016.06.009. Epub 2016 Jun 19.
10
Hyaluronan cable formation by ocular trabecular meshwork cells.
Exp Eye Res. 2015 Oct;139:97-107. doi: 10.1016/j.exer.2015.07.018. Epub 2015 Aug 4.

引用本文的文献

1
Class I PI3Ks activate stretch-induced autophagy in trabecular meshwork cells.
Cell Mol Life Sci. 2025 Feb 22;82(1):82. doi: 10.1007/s00018-025-05615-x.
3
Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.
Invest Ophthalmol Vis Sci. 2025 Jan 2;66(1):43. doi: 10.1167/iovs.66.1.43.
5
To be or not to be - Decoding the Trabecular Meshwork Cell Identity.
bioRxiv. 2024 Apr 29:2024.04.26.591346. doi: 10.1101/2024.04.26.591346.
6
Identification and validation of autophagy-related genes in primary open-angle glaucoma.
BMC Med Genomics. 2023 Nov 15;16(1):287. doi: 10.1186/s12920-023-01722-5.
7
Shear stress induces autophagy in Schlemm's canal cells via primary cilia-mediated SMAD2/3 signaling pathway.
Autophagy Rep. 2023;2(1). doi: 10.1080/27694127.2023.2236519. Epub 2023 Jul 20.
8
iPSCs-Based Therapy for Trabecular Meshwork.
Handb Exp Pharmacol. 2023;281:277-300. doi: 10.1007/164_2023_671.
9
Molecular signaling from microglia impacts macroglia autophagy and neurons survival in glaucoma.
iScience. 2023 May 9;26(6):106839. doi: 10.1016/j.isci.2023.106839. eCollection 2023 Jun 16.
10
AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY.
Autophagy Rep. 2023;2(1). doi: 10.1080/27694127.2023.2178996. Epub 2023 Mar 1.

本文引用的文献

1
Intraocular pressure homeostasis: maintaining balance in a high-pressure environment.
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):94-101. doi: 10.1089/jop.2013.0185. Epub 2014 Jan 8.
3
Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK.
Biochim Biophys Acta. 2013 Dec;1833(12):3124-3133. doi: 10.1016/j.bbamcr.2013.08.023. Epub 2013 Sep 8.
4
Emerging regulation and functions of autophagy.
Nat Cell Biol. 2013 Jul;15(7):713-20. doi: 10.1038/ncb2788.
5
Rearrangement of microtubule network under biochemical and mechanical stimulations.
Methods. 2013 Apr 1;60(2):195-201. doi: 10.1016/j.ymeth.2013.02.014. Epub 2013 Mar 4.
6
Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy.
Curr Biol. 2013 Mar 4;23(5):430-5. doi: 10.1016/j.cub.2013.01.064. Epub 2013 Feb 21.
8
Mechanical stress meets autophagy: potential implications for physiology and pathology.
Trends Mol Med. 2012 Oct;18(10):583-8. doi: 10.1016/j.molmed.2012.08.002. Epub 2012 Sep 13.
9
Guidelines for the use and interpretation of assays for monitoring autophagy.
Autophagy. 2012 Apr;8(4):445-544. doi: 10.4161/auto.19496.
10
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB.
Autophagy. 2012 Jun;8(6):903-14. doi: 10.4161/auto.19653. Epub 2012 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验