Sert Yusuf, El-Emam Ali A, Al-Deeb Omar A, Al-Turkistani Abdulghafoor A, Ucun Fatih, Cırak Cağrı
Department of Physics, Faculty of Art & Sciences, Bozok University, Yozgat 66100, Turkey.
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Spectrochim Acta A Mol Biomol Spectrosc. 2014 May 21;126:86-97. doi: 10.1016/j.saa.2014.01.140. Epub 2014 Feb 13.
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
在本研究中,对一种新合成的潜在化疗药物2-[(2-甲氧基)硫烷基]-4-(2-甲基丙基)-6-氧代-1,6-二氢嘧啶-5-腈的实验和理论振动频率进行了研究。记录了该分子在固相中的实验傅里叶变换红外光谱(4000 - 400cm⁻¹)和激光拉曼光谱(4000 - 100cm⁻¹)。首次使用密度泛函理论(DFT/B3LYP:Becke三参数、Lee-Yang-Parr)和M06 - 2X(高度参数化的经验交换相关函数)量子化学方法,结合高斯09W软件的6 - 311++G(d,p)基组,计算了理论振动频率和优化的几何参数(键长和键角)。通过使用VEDA 4软件进行势能分布(PED)分析来完成振动频率的归属。发现理论优化的几何参数和振动频率与相应的实验数据以及文献中的结果高度吻合。此外,使用相同的理论计算研究了该化合物的最高占据分子轨道(HOMO)能量、最低未占据分子轨道(LUMO)能量以及其他相关的分子能量值。