Suppr超能文献

脯氨酸和谷氨酰胺途径对缺乏谷氨酸脱氢酶的酵母中谷氨酸生物合成和氮同化的不同贡献。

Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

作者信息

Sieg Alex G, Trotter Pamela J

机构信息

Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States.

Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States.

出版信息

Microbiol Res. 2014 Sep-Oct;169(9-10):709-16. doi: 10.1016/j.micres.2014.02.004. Epub 2014 Feb 17.

Abstract

In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

摘要

在酿酒酵母中,谷氨酸脱氢酶(GDH)在谷氨酸生物合成和氮同化过程中起着关键作用。有人提出,在缺乏GDH的酵母中,脯氨酸利用(PUT)途径或谷氨酰胺合成酶-谷氨酸合酶(GS/GOGAT)途径作为谷氨酸产生和氮同化的替代途径,二者相互排斥。利用gdh基因缺失突变体(gdh1Δ2Δ3Δ),通过对多种氮源(氨、谷氨酰胺、脯氨酸和尿素)进行生长研究和特定途径的酶活性测定相结合的方法,解决了这一模糊问题。GDH基因缺失突变体在所有测试的氮源上均能存活,证实了gdh基因缺失菌株中存在氮同化的替代途径。酶活性测定表明,在首选氮源氨和谷氨酰胺上,GS/GOGAT是主要的替代途径,而在脯氨酸上生长则需要PUT和GS/GOGAT途径。相反,在葡萄糖-尿素培养基上生长会导致GOGAT活性降低,同时PUT途径特异性酶Δ(1)-吡咯啉-5-羧酸脱氢酶(P5CDH)的活性增加。总之,这些结果表明,在缺乏首选的依赖GDH途径的菌株中,氮同化的替代途径是依赖氮源的,并且GS/GOGAT和PUT都不是唯一的补偿途径。

相似文献

3
Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess.
J Bacteriol. 1987 Sep;169(9):4211-4. doi: 10.1128/jb.169.9.4211-4214.1987.
5
Glutamine assimilation pathways in Neurospora crassa growing on glutamine as sole nitrogen and carbon source.
J Gen Microbiol. 1989 Oct;135(10):2699-707. doi: 10.1099/00221287-135-10-2699.
7
Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium.
J Bacteriol. 1980 Feb;141(2):593-602. doi: 10.1128/jb.141.2.593-602.1980.

引用本文的文献

1
Deciphering the ammonia transformation mechanism of a novel marine multi-stress-tolerant yeast, HJ2, as revealed by integrated omics analysis.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0221124. doi: 10.1128/aem.02211-24. Epub 2025 May 8.
2
The Identification of Family Genes and Their Expression, Function, and Regulation in .
Plants (Basel). 2024 Dec 17;13(24):3524. doi: 10.3390/plants13243524.
3
Identification and genomic analysis of a thermophilic bacterial strain that reduces ammonia loss from composting.
Microbiol Spectr. 2024 Oct 3;12(10):e0076324. doi: 10.1128/spectrum.00763-24. Epub 2024 Aug 20.
4
Proteomics of : Overview of Changes Triggered by Nitrogen Catabolite Repression.
J Fungi (Basel). 2023 Nov 12;9(11):1102. doi: 10.3390/jof9111102.
7
A metabolomic study of the effect of glutamate dehydrogenase deletion on growth and morphogenesis.
NPJ Biofilms Microbiomes. 2019 Apr 8;5(1):13. doi: 10.1038/s41522-019-0086-5. eCollection 2019.
8
The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae.
Microb Cell Fact. 2018 Nov 1;17(1):170. doi: 10.1186/s12934-018-1018-4.

本文引用的文献

1
¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae.
Microbiol Res. 2011 Oct 20;166(7):521-30. doi: 10.1016/j.micres.2010.10.004. Epub 2011 Jan 15.
2
Purification and characterization of Put1p from Saccharomyces cerevisiae.
Arch Biochem Biophys. 2010 Jun 15;498(2):136-42. doi: 10.1016/j.abb.2010.04.020. Epub 2010 May 5.
4
Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast.
Arch Biochem Biophys. 2005 Oct 1;442(1):21-32. doi: 10.1016/j.abb.2005.07.016.
5
Ammonia assimilation by Saccharomyces cerevisiae.
Eukaryot Cell. 2003 Oct;2(5):827-9. doi: 10.1128/EC.2.5.827-829.2003.
6
Getting started with yeast.
Methods Enzymol. 2002;350:3-41. doi: 10.1016/s0076-6879(02)50954-x.
7
Nitrogen regulation in Saccharomyces cerevisiae.
Gene. 2002 May 15;290(1-2):1-18. doi: 10.1016/s0378-1119(02)00558-9.
8
NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles.
J Biol Chem. 2001 Nov 23;276(47):43775-83. doi: 10.1074/jbc.M107986200. Epub 2001 Sep 18.
9
The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2000 Jan;24(1):67-83. doi: 10.1111/j.1574-6976.2000.tb00533.x.
10
Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae.
J Bacteriol. 1998 Jul;180(14):3533-40. doi: 10.1128/JB.180.14.3533-3540.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验