Suppr超能文献

朊病毒样聚合在抗病毒免疫防御和炎症小体激活中的信号转导中起基础作用。

Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation.

机构信息

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cell. 2014 Mar 13;156(6):1207-1222. doi: 10.1016/j.cell.2014.01.063.

Abstract

Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and that their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation.

摘要

病原体和细胞危险信号激活传感器,如 RIG-I 和 NLRP3,通过各自的衔接蛋白 MAVS 和 ASC 产生强大的免疫和炎症反应,这些蛋白分别含有必需的 N 端 CARD 和 PYRIN 结构域。在这里,我们表明 CARD 和 PYRIN 在酵母中作为真正的朊病毒发挥作用,并且它们的朊病毒形式可以被各自的上游激活剂诱导。同样,酵母朊病毒结构域可以在哺乳动物细胞信号转导中替代 CARD 和 PYRIN 的功能。在酵母中破坏 MAVS 和 ASC 朊病毒活性的突变也会使其在哺乳动物细胞中信号转导的能力丧失。此外,重组 PYRIN 的纤维可以将 ASC 转化为能够激活 caspase-1 的功能性聚合物。值得注意的是,一种保守的真菌 NOD 样受体和朊病毒对可以在哺乳动物细胞中重建 NLRP3 和 ASC PYRINs 的信号转导。这些结果表明,朊病毒样聚合是先天免疫和炎症中一种保守的信号转导机制。

相似文献

2
Inflammasome: putting the pieces together.
Cell. 2014 Mar 13;156(6):1127-1129. doi: 10.1016/j.cell.2014.02.038.
3
The CARD plays a critical role in ASC foci formation and inflammasome signalling.
Biochem J. 2013 Feb 1;449(3):613-21. doi: 10.1042/BJ20121198.
4
Prion-Like Polymerization in Immunity and Inflammation.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a023580. doi: 10.1101/cshperspect.a023580.
5
The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation.
Cell. 2013 Apr 11;153(2):348-61. doi: 10.1016/j.cell.2013.02.054.
6
Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes.
Cell. 2014 Mar 13;156(6):1193-1206. doi: 10.1016/j.cell.2014.02.008.
7
Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation.
Infect Immun. 2007 Mar;75(3):1484-92. doi: 10.1128/IAI.01315-06. Epub 2006 Dec 18.
8
Prion pathogenesis in the absence of NLRP3/ASC inflammasomes.
PLoS One. 2015 Feb 11;10(2):e0117208. doi: 10.1371/journal.pone.0117208. eCollection 2015.
9
Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein.
J Biol Chem. 2012 Dec 7;287(50):41732-43. doi: 10.1074/jbc.M112.381228. Epub 2012 Oct 12.

引用本文的文献

2
Pattern recognition receptors and inflammasome: Now and beyond.
Mol Cells. 2025 Aug;48(8):100239. doi: 10.1016/j.mocell.2025.100239. Epub 2025 Jun 15.
3
SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity.
Nat Commun. 2025 May 12;16(1):4393. doi: 10.1038/s41467-025-59475-x.
4
Modeling Necroptotic and Pyroptotic Signaling in .
Biomolecules. 2025 Apr 4;15(4):530. doi: 10.3390/biom15040530.
5
Metabolic remodelling produces fumarate via the aspartate-argininosuccinate shunt in macrophages as an antiviral defence.
Nat Microbiol. 2025 May;10(5):1115-1129. doi: 10.1038/s41564-025-01985-x. Epub 2025 Apr 18.
7
Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces.
Neural Regen Res. 2026 Feb 1;21(2):612-635. doi: 10.4103/NRR.NRR-D-24-01330. Epub 2025 Feb 24.
8
NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury.
Drug Des Devel Ther. 2025 Feb 14;19:1025-1041. doi: 10.2147/DDDT.S506537. eCollection 2025.
9
PRRSV-2 nsp2 Ignites NLRP3 inflammasome through IKKβ-dependent dispersed trans-Golgi network translocation.
PLoS Pathog. 2025 Jan 27;21(1):e1012915. doi: 10.1371/journal.ppat.1012915. eCollection 2025 Jan.

本文引用的文献

1
Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly.
Mol Cell. 2013 Sep 26;51(6):766-79. doi: 10.1016/j.molcel.2013.08.032.
3
Heritable remodeling of yeast multicellularity by an environmentally responsive prion.
Cell. 2013 Mar 28;153(1):153-65. doi: 10.1016/j.cell.2013.02.026.
4
The mechanism of toxicity in HET-S/HET-s prion incompatibility.
PLoS Biol. 2012;10(12):e1001451. doi: 10.1371/journal.pbio.1001451. Epub 2012 Dec 27.
5
Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.
Science. 2013 Feb 15;339(6121):786-91. doi: 10.1126/science.1232458. Epub 2012 Dec 20.
6
Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA.
Science. 2013 Feb 15;339(6121):826-30. doi: 10.1126/science.1229963. Epub 2012 Dec 20.
7
Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein.
J Biol Chem. 2012 Dec 7;287(50):41732-43. doi: 10.1074/jbc.M112.381228. Epub 2012 Oct 12.
8
Prions in yeast.
Genetics. 2012 Aug;191(4):1041-72. doi: 10.1534/genetics.111.137760.
10
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response.
Immunity. 2012 Jun 29;36(6):959-73. doi: 10.1016/j.immuni.2012.03.022. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验