Suppr超能文献

从短期数据估计长期多变量进展。

Estimating long-term multivariate progression from short-term data.

作者信息

Donohue Michael C, Jacqmin-Gadda Hélène, Le Goff Mélanie, Thomas Ronald G, Raman Rema, Gamst Anthony C, Beckett Laurel A, Jack Clifford R, Weiner Michael W, Dartigues Jean-François, Aisen Paul S

机构信息

Department of Family and Preventive Medicine, Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, USA.

INSERM, U897, Biostatistics Department, Bordeaux, France.

出版信息

Alzheimers Dement. 2014 Oct;10(5 Suppl):S400-10. doi: 10.1016/j.jalz.2013.10.003. Epub 2014 Mar 20.

Abstract

MOTIVATION

Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of long-term progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agées Quid" study.

RESULTS

We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm.

AVAILABILITY

Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging.

摘要

动机

进展缓慢的疾病通常通过在疾病的不同阶段对队列进行短时间观察来研究。阿尔茨海默病神经影像学倡议(ADNI)跟踪从正常到受损的不同程度认知障碍的老年人。该研究包括一系列丰富的新型认知测试、生物标志物和脑图像,每6个月收集一次,长达6年。观察相对于疾病病理的相对时间是未知的。我们提出了一个通用的半参数模型和迭代估计程序,以同时估计病理时间和长期生长曲线。使用来自长期“Personnes Agées Quid”研究的认知轨迹对长期进展的估计结果进行微调。

结果

我们通过模拟证明该方法可以从短期观察中恢复长期疾病趋势。该方法还估计个体相对于疾病病理的时间顺序,提供症状出现前时间的个体特异性预后估计。当该方法应用于ADNI数据时,估计的生长曲线与阿尔茨海默病级联的主流理论总体一致。具有共同结果测量的其他数据集可以使用所提出的算法进行合并。

可用性

用于拟合模型并使用统计软件R重现结果的软件作为grace包提供。ADNI数据可从神经影像学实验室下载。

相似文献

1
Estimating long-term multivariate progression from short-term data.
Alzheimers Dement. 2014 Oct;10(5 Suppl):S400-10. doi: 10.1016/j.jalz.2013.10.003. Epub 2014 Mar 20.
3
Disease progression timeline estimation for Alzheimer's disease using discriminative event based modeling.
Neuroimage. 2019 Feb 1;186:518-532. doi: 10.1016/j.neuroimage.2018.11.024. Epub 2018 Nov 22.
4
Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression.
J Prev Alzheimers Dis. 2023;10(2):212-222. doi: 10.14283/jpad.2023.13.
5
DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders.
Neuroimage. 2019 May 15;192:166-177. doi: 10.1016/j.neuroimage.2019.02.053. Epub 2019 Mar 4.
7
Robust parametric modeling of Alzheimer's disease progression.
Neuroimage. 2021 Jan 15;225:117460. doi: 10.1016/j.neuroimage.2020.117460. Epub 2020 Oct 16.
8
Categorical predictive and disease progression modeling in the early stage of Alzheimer's disease.
J Neurosci Methods. 2022 May 15;374:109581. doi: 10.1016/j.jneumeth.2022.109581. Epub 2022 Mar 25.
9
Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databases.
Neuroimage. 2018 Dec;183:401-411. doi: 10.1016/j.neuroimage.2018.08.040. Epub 2018 Aug 18.
10
A Bayesian group sparse multi-task regression model for imaging genetics.
Bioinformatics. 2017 Aug 15;33(16):2513-2522. doi: 10.1093/bioinformatics/btx215.

引用本文的文献

3
Estimating the preclinical Alzheimer's disease course with multimodal data.
Alzheimers Dement. 2025 Sep;21(9):e70658. doi: 10.1002/alz.70658.
4
Balancing practicality and complexity in neuroimaging models of Parkinson's disease progression.
NPJ Parkinsons Dis. 2025 Aug 27;11(1):262. doi: 10.1038/s41531-025-01125-6.
5
The temporal dynamics and clinical relevance of choroid plexus measures in multiple sclerosis.
Brain Commun. 2025 Jun 14;7(3):fcaf239. doi: 10.1093/braincomms/fcaf239. eCollection 2025.
6
7
Neuroimaging-based data-driven subtypes of spatiotemporal atrophy due to Parkinson's disease.
Brain Commun. 2025 Apr 16;7(2):fcaf146. doi: 10.1093/braincomms/fcaf146. eCollection 2025.
10
Dynamic changes in peripheral blood lymphocyte trajectory predict the clinical outcomes of sepsis.
Front Immunol. 2025 Feb 4;16:1431066. doi: 10.3389/fimmu.2025.1431066. eCollection 2025.

本文引用的文献

2
Biomarkers for Alzheimer's: the sequel of an original model.
Lancet Neurol. 2013 Feb;12(2):126-8. doi: 10.1016/S1474-4422(12)70305-8.
3
Clinical and biomarker changes in dominantly inherited Alzheimer's disease.
N Engl J Med. 2012 Aug 30;367(9):795-804. doi: 10.1056/NEJMoa1202753. Epub 2012 Jul 11.
4
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6.
5
Relationships between biomarkers in aging and dementia.
Neurology. 2009 Oct 13;73(15):1193-9. doi: 10.1212/WNL.0b013e3181bc010c.
7
Prodromal Alzheimer's disease: successive emergence of the clinical symptoms.
Ann Neurol. 2008 Nov;64(5):492-8. doi: 10.1002/ana.21509.
9
Infant growth modelling using a shape invariant model with random effects.
Stat Med. 2007 May 30;26(12):2547-64. doi: 10.1002/sim.2718.
10
Self modeling with flexible, random time transformations.
Biometrics. 2004 Jun;60(2):461-70. doi: 10.1111/j.0006-341X.2004.00191.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验