Donohue Michael C, Jacqmin-Gadda Hélène, Le Goff Mélanie, Thomas Ronald G, Raman Rema, Gamst Anthony C, Beckett Laurel A, Jack Clifford R, Weiner Michael W, Dartigues Jean-François, Aisen Paul S
Department of Family and Preventive Medicine, Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, USA.
INSERM, U897, Biostatistics Department, Bordeaux, France.
Alzheimers Dement. 2014 Oct;10(5 Suppl):S400-10. doi: 10.1016/j.jalz.2013.10.003. Epub 2014 Mar 20.
Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of long-term progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agées Quid" study.
We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm.
Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging.
进展缓慢的疾病通常通过在疾病的不同阶段对队列进行短时间观察来研究。阿尔茨海默病神经影像学倡议(ADNI)跟踪从正常到受损的不同程度认知障碍的老年人。该研究包括一系列丰富的新型认知测试、生物标志物和脑图像,每6个月收集一次,长达6年。观察相对于疾病病理的相对时间是未知的。我们提出了一个通用的半参数模型和迭代估计程序,以同时估计病理时间和长期生长曲线。使用来自长期“Personnes Agées Quid”研究的认知轨迹对长期进展的估计结果进行微调。
我们通过模拟证明该方法可以从短期观察中恢复长期疾病趋势。该方法还估计个体相对于疾病病理的时间顺序,提供症状出现前时间的个体特异性预后估计。当该方法应用于ADNI数据时,估计的生长曲线与阿尔茨海默病级联的主流理论总体一致。具有共同结果测量的其他数据集可以使用所提出的算法进行合并。
用于拟合模型并使用统计软件R重现结果的软件作为grace包提供。ADNI数据可从神经影像学实验室下载。