Suppr超能文献

AFG3L2 缺失导致线粒体运输缺陷和 tau 过度磷酸化。

Loss of the m-AAA protease subunit AFG₃L₂ causes mitochondrial transport defects and tau hyperphosphorylation.

机构信息

Institute for Genetics, University of Cologne, Cologne, Germany.

出版信息

EMBO J. 2014 May 2;33(9):1011-26. doi: 10.1002/embj.201387009. Epub 2014 Mar 28.

Abstract

The m-AAA protease subunit AFG₃L₂ is involved in degradation and processing of substrates in the inner mitochondrial membrane. Mutations in AFG₃L₂ are associated with spinocerebellar ataxia SCA28 in humans and impair axonal development and neuronal survival in mice. The loss of AFG₃L₂ causes fragmentation of the mitochondrial network. However, the pathogenic mechanism of neurodegeneration in the absence of AFG₃L₂ is still unclear. Here, we show that depletion of AFG₃L₂ leads to a specific defect of anterograde transport of mitochondria in murine cortical neurons. We observe similar transport deficiencies upon loss of AFG₃L₂ in OMA1-deficient neurons, indicating that they are not caused by OMA1-mediated degradation of the dynamin-like GTPase OPA1 and inhibition of mitochondrial fusion. Treatment of neurons with antioxidants, such as N-acetylcysteine or vitamin E, or decreasing tau levels in axons restored mitochondrial transport in AFG₃L₂-depleted neurons. Consistently, tau hyperphosphorylation and activation of ERK kinases are detected in mouse neurons postnatally deleted for Afg3l2. We propose that reactive oxygen species signaling leads to cytoskeletal modifications that impair mitochondrial transport in neurons lacking AFG₃L₂.

摘要

m-AAA 蛋白酶亚基 AFG₃L₂ 参与线粒体内部基质中底物的降解和加工。AFG₃L₂ 中的突变与人类的脊髓小脑共济失调 SCA28 有关,并损害小鼠的轴突发育和神经元存活。AFG₃L₂ 的缺失会导致线粒体网络的碎片化。然而,在没有 AFG₃L₂ 的情况下神经退行性变的致病机制仍不清楚。在这里,我们表明 AFG₃L₂ 的耗竭会导致鼠皮质神经元中线粒体顺行运输的特定缺陷。我们在 OMA1 缺陷神经元中观察到类似的运输缺陷,表明它们不是由 OMA1 介导的动力相关 GTP 酶 OPA1 的降解和线粒体融合的抑制引起的。用抗氧化剂(如 N-乙酰半胱氨酸或维生素 E)处理神经元,或降低轴突中的 tau 水平,可恢复 AFG₃L₂ 耗竭神经元中的线粒体运输。一致地,在 Afg3l2 缺失的小鼠神经元中检测到 tau 过度磷酸化和 ERK 激酶的激活。我们提出,活性氧信号导致细胞骨架的改变,从而损害缺乏 AFG₃L₂ 的神经元中的线粒体运输。

相似文献

1
Loss of the m-AAA protease subunit AFG₃L₂ causes mitochondrial transport defects and tau hyperphosphorylation.
EMBO J. 2014 May 2;33(9):1011-26. doi: 10.1002/embj.201387009. Epub 2014 Mar 28.
2
Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1.
J Cell Biol. 2009 Dec 28;187(7):1023-36. doi: 10.1083/jcb.200906084.
3
m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.
Cell Res. 2018 Mar;28(3):296-306. doi: 10.1038/cr.2018.17. Epub 2018 Feb 16.
4
Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
Brain. 2024 Mar 1;147(3):1043-1056. doi: 10.1093/brain/awad340.
7
AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival.
J Clin Invest. 2012 Nov;122(11):4048-58. doi: 10.1172/JCI64604. Epub 2012 Oct 8.
8
The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.
Mol Cell. 2016 Oct 6;64(1):148-162. doi: 10.1016/j.molcel.2016.08.020. Epub 2016 Sep 15.

引用本文的文献

1
Mitochondrial medicine: "from bench to bedside" 3PM-guided concept.
EPMA J. 2025 Apr 15;16(2):239-264. doi: 10.1007/s13167-025-00409-4. eCollection 2025 Jun.
5
Mitochondrial quality control in human health and disease.
Mil Med Res. 2024 May 29;11(1):32. doi: 10.1186/s40779-024-00536-5.
6
Mitochondrial protein synthesis quality control.
Hum Mol Genet. 2024 May 22;33(R1):R53-R60. doi: 10.1093/hmg/ddae012.
7
Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders.
Mol Neurobiol. 2024 Jul;61(7):3788-3808. doi: 10.1007/s12035-023-03768-z. Epub 2023 Nov 28.
8
AAA+ proteases: the first line of defense against mitochondrial damage.
PeerJ. 2022 Nov 7;10:e14350. doi: 10.7717/peerj.14350. eCollection 2022.
9
The emerging role of autophagy and mitophagy in tauopathies: From pathogenesis to translational implications in Alzheimer's disease.
Front Aging Neurosci. 2022 Oct 17;14:1022821. doi: 10.3389/fnagi.2022.1022821. eCollection 2022.
10
GnRH replacement rescues cognition in Down syndrome.
Science. 2022 Sep 2;377(6610):eabq4515. doi: 10.1126/science.abq4515.

本文引用的文献

1
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics.
EMBO J. 2014 Mar 18;33(6):578-93. doi: 10.1002/embj.201386474. Epub 2014 Feb 18.
2
Reactive oxygen species in the activation of MAP kinases.
Methods Enzymol. 2013;528:27-48. doi: 10.1016/B978-0-12-405881-1.00002-1.
3
A history of vitamin E.
Ann Nutr Metab. 2012;61(3):207-12. doi: 10.1159/000343106. Epub 2012 Nov 26.
5
AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival.
J Clin Invest. 2012 Nov;122(11):4048-58. doi: 10.1172/JCI64604. Epub 2012 Oct 8.
7
Tau protein kinases: involvement in Alzheimer's disease.
Ageing Res Rev. 2013 Jan;12(1):289-309. doi: 10.1016/j.arr.2012.06.003. Epub 2012 Jun 26.
9
Mitochondrial quality control: a matter of life and death for neurons.
EMBO J. 2012 Mar 21;31(6):1336-49. doi: 10.1038/emboj.2012.38. Epub 2012 Feb 21.
10
Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly.
EMBO J. 2012 Mar 7;31(5):1293-307. doi: 10.1038/emboj.2011.477. Epub 2012 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验