Suppr超能文献

REKINDLE:通过线性估计稳健提取峰度指数

REKINDLE: robust extraction of kurtosis INDices with linear estimation.

作者信息

Tax Chantal M W, Otte Willem M, Viergever Max A, Dijkhuizen Rick M, Leemans Alexander

机构信息

Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Magn Reson Med. 2015 Feb;73(2):794-808. doi: 10.1002/mrm.25165. Epub 2014 Mar 31.

Abstract

PURPOSE

Recent literature shows that diffusion tensor properties can be estimated more accurately with diffusion kurtosis imaging (DKI) than with diffusion tensor imaging (DTI). Furthermore, the additional non-Gaussian diffusion features from DKI can be sensitive markers for tissue characterization. Despite these benefits, DKI is more susceptible to data artifacts than DTI due to its increased model complexity, higher acquisition demands, and longer scanning times. To increase the reliability of diffusion tensor and kurtosis estimates, we propose a robust estimation procedure for DKI.

METHODS

We have developed a robust and linear estimation framework, coined REKINDLE (Robust Extraction of Kurtosis INDices with Linear Estimation), consisting of an iteratively reweighted linear least squares approach. Simulations are performed, in which REKINDLE is evaluated and compared with the widely used RESTORE (Robust EStimation of Tensors by Outlier REjection) method.

RESULTS

Simulations demonstrate that in the presence of outliers, REKINDLE can estimate diffusion and kurtosis indices reliably and with a 10-fold reduction in computation time compared with RESTORE.

CONCLUSION

We have presented and evaluated REKINDLE, a linear and robust estimation framework for DKI. While REKINDLE has been developed for DKI, it is by design also applicable to DTI and other diffusion models that can be linearized.

摘要

目的

近期文献表明,与扩散张量成像(DTI)相比,扩散峰度成像(DKI)能更准确地估计扩散张量特性。此外,DKI额外的非高斯扩散特征可作为组织特征的敏感标志物。尽管有这些优点,但由于模型复杂度增加、采集要求更高以及扫描时间更长,DKI比DTI更容易受到数据伪影的影响。为提高扩散张量和峰度估计的可靠性,我们提出了一种用于DKI的稳健估计程序。

方法

我们开发了一个稳健的线性估计框架,称为REKINDLE(通过线性估计稳健提取峰度指数),它由迭代加权线性最小二乘法组成。进行了模拟,在模拟中对REKINDLE进行评估,并与广泛使用的RESTORE(通过异常值拒绝稳健估计张量)方法进行比较。

结果

模拟表明,在存在异常值的情况下,REKINDLE能够可靠地估计扩散和峰度指数,并且与RESTORE相比,计算时间减少了10倍。

结论

我们提出并评估了REKINDLE,这是一种用于DKI的线性且稳健的估计框架。虽然REKINDLE是为DKI开发的,但从设计上讲它也适用于DTI和其他可以线性化的扩散模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验