Suppr超能文献

白色念珠菌通过5号染色体单体伴随另一条携带负责山梨糖利用基因的染色体复制来适应在山梨糖上生长。

Adaptation of Candida albicans to growth on sorbose via monosomy of chromosome 5 accompanied by duplication of another chromosome carrying a gene responsible for sorbose utilization.

作者信息

Kravets Anatoliy, Yang Feng, Bethlendy Gabor, Cao Yongbing, Sherman Fred, Rustchenko Elena

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.

出版信息

FEMS Yeast Res. 2014 Aug;14(5):708-13. doi: 10.1111/1567-1364.12155. Epub 2014 May 13.

Abstract

Candida albicans, a fungus that normally inhabits the digestive tract and other mucosal surfaces, can become a pathogen in immunocompromised individuals, causing severe or even fatal infection. Mechanisms by which C. albicans can evade commonly used antifungal agents are not fully understood. We are studying a model system involving growth of C. albicans on toxic sugar sorbose, which represses synthesis of cell wall glucan and, as a result, kills fungi in a manner similar to drugs from the echinocandins class. Adaptation to sorbose occurs predominantly due to reversible loss of one homolog of chromosome 5 (Ch5), which results in upregulation of the metabolic gene SOU1 (SOrbose Utilization) on Ch4. Here, we show that growth on sorbose due to Ch5 monosomy can involve a facultative trisomy of a hybrid Ch4/7 that serves to increase copy number of the SOU1 gene. This shows that control of expression of SOU1 can involve multiple mechanisms; in this case, negative regulation and increase in gene copy number operating simultaneously in cell.

摘要

白色念珠菌是一种通常寄居于消化道和其他粘膜表面的真菌,在免疫功能低下的个体中可成为病原体,引发严重甚至致命的感染。白色念珠菌能够逃避常用抗真菌药物的机制尚未完全明确。我们正在研究一个模型系统,该系统涉及白色念珠菌在有毒糖山梨糖上的生长,山梨糖会抑制细胞壁葡聚糖的合成,进而以类似于棘白菌素类药物的方式杀死真菌。对山梨糖的适应主要是由于5号染色体(Ch5)的一个同源物发生可逆性缺失,这导致4号染色体上的代谢基因SOU1(山梨糖利用基因)上调。在此,我们表明,由于Ch5单体导致的在山梨糖上生长可能涉及一个混合的Ch4/7兼性三体,其作用是增加SOU1基因的拷贝数。这表明SOU1表达的调控可能涉及多种机制;在这种情况下,负调控和基因拷贝数增加在细胞中同时起作用。

相似文献

2
Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5150-5. doi: 10.1073/pnas.95.9.5150.
3
Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals.
Antimicrob Agents Chemother. 2013 Oct;57(10):5026-36. doi: 10.1128/AAC.00516-13. Epub 2013 Jul 29.
5
Transcriptional Regulation on Aneuploid Chromosomes in Divers Candida albicans Mutants.
Sci Rep. 2018 Jan 26;8(1):1630. doi: 10.1038/s41598-018-20106-9.
7
Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12147-52. doi: 10.1073/pnas.0505625102. Epub 2005 Aug 11.
8
Ndt80p is involved in L-sorbose utilization through regulating SOU1 in Candida albicans.
Int J Med Microbiol. 2015 Jan;305(1):170-3. doi: 10.1016/j.ijmm.2014.11.001. Epub 2014 Nov 20.
10
Transcriptional regulatory circuitries in the human pathogen Candida albicans involving sense--antisense interactions.
Genetics. 2012 Feb;190(2):537-47. doi: 10.1534/genetics.111.136267. Epub 2011 Nov 30.

引用本文的文献

1
Genome-Wide DNA Changes Acquired by Caspofungin-Adapted Mutants.
Microorganisms. 2023 Jul 25;11(8):1870. doi: 10.3390/microorganisms11081870.
2
Aneuploidy and gene dosage regulate filamentation and host colonization by .
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2218163120. doi: 10.1073/pnas.2218163120. Epub 2023 Mar 9.
4
Aneuploidy Underlies Tolerance and Cross-Tolerance to Drugs in Candida parapsilosis.
Microbiol Spectr. 2021 Oct 31;9(2):e0050821. doi: 10.1128/Spectrum.00508-21. Epub 2021 Oct 6.
5
Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans.
mBio. 2021 Aug 31;12(4):e0227221. doi: 10.1128/mBio.02272-21.
6
Fungal evolution: cellular, genomic and metabolic complexity.
Biol Rev Camb Philos Soc. 2020 Oct;95(5):1198-1232. doi: 10.1111/brv.12605. Epub 2020 Apr 17.
7
Mechanisms of genome evolution in Candida albicans.
Curr Opin Microbiol. 2019 Dec;52:47-54. doi: 10.1016/j.mib.2019.05.001. Epub 2019 Jun 6.
8
Transcriptional Regulation on Aneuploid Chromosomes in Divers Candida albicans Mutants.
Sci Rep. 2018 Jan 26;8(1):1630. doi: 10.1038/s41598-018-20106-9.

本文引用的文献

1
Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals.
Antimicrob Agents Chemother. 2013 Oct;57(10):5026-36. doi: 10.1128/AAC.00516-13. Epub 2013 Jul 29.
2
Transcriptional regulatory circuitries in the human pathogen Candida albicans involving sense--antisense interactions.
Genetics. 2012 Feb;190(2):537-47. doi: 10.1534/genetics.111.136267. Epub 2011 Nov 30.
3
High-frequency genetic contents variations in clinical Candida albicans isolates.
Biol Pharm Bull. 2011;34(5):624-31. doi: 10.1248/bpb.34.624.
4
Widespread occurrence of dosage compensation in Candida albicans.
PLoS One. 2010 Jun 11;5(6):e10856. doi: 10.1371/journal.pone.0010856.
5
Genomic plasticity of the human fungal pathogen Candida albicans.
Eukaryot Cell. 2010 Jul;9(7):991-1008. doi: 10.1128/EC.00060-10. Epub 2010 May 21.
6
Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants.
FEMS Yeast Res. 2009 Oct;9(7):1070-7. doi: 10.1111/j.1567-1364.2009.00563.x. Epub 2009 Aug 6.
8
Chromosome instability in Candida albicans.
FEMS Yeast Res. 2007 Jan;7(1):2-11. doi: 10.1111/j.1567-1364.2006.00150.x.
10
Aneuploidy and isochromosome formation in drug-resistant Candida albicans.
Science. 2006 Jul 21;313(5785):367-70. doi: 10.1126/science.1128242.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验