Suppr超能文献

通过长达十年的克隆追踪研究揭示非人灵长类动物 HSPC 重编程动力学。

Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study.

机构信息

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea.

出版信息

Cell Stem Cell. 2014 Apr 3;14(4):473-85. doi: 10.1016/j.stem.2013.12.012.

Abstract

In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work.

摘要

在小鼠中,对造血干细胞(HSCs)的克隆追踪揭示了其在重编程特征上的差异。然而,目前尚不清楚类似的特性是否适用于灵长类动物。在这里,我们通过对多达数千个恒河猴造血干细胞和祖细胞(HSPCs)进行长达 12 年的追踪来研究这个问题。大约一半的分析克隆有助于长期重编程(超过 3-10 年),它们呈连续组出现,可能代表自我更新的 HSCs。其余的主要在第一年起作用。长寿克隆可以进一步细分为主要贡献于髓系、淋巴系或两者的功能组。随着时间的推移,具有强大双谱系贡献的 4%-10%的克隆在重编程中占主导地位。表达 CCR5 shRNA 转基因的 HSPCs 表现与对照组相似。因此,我们的研究在一个长期的临床相关模型中记录了 HSPC 的行为,并提供了一个大量的系统级数据集,作为未来工作的参考点。

相似文献

1
Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study.
Cell Stem Cell. 2014 Apr 3;14(4):473-85. doi: 10.1016/j.stem.2013.12.012.
2
Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells.
Cell Stem Cell. 2014 Apr 3;14(4):486-499. doi: 10.1016/j.stem.2014.01.020.
3
No monkeying around: clonal tracking of stem cells and progenitors in the macaque.
Cell Stem Cell. 2014 Apr 3;14(4):419-20. doi: 10.1016/j.stem.2014.03.006.
4
Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.
Blood. 2016 May 19;127(20):2416-26. doi: 10.1182/blood-2015-09-672337. Epub 2016 Mar 15.
5
The impact of aging on primate hematopoiesis as interrogated by clonal tracking.
Blood. 2018 Mar 15;131(11):1195-1205. doi: 10.1182/blood-2017-08-802033. Epub 2018 Jan 2.
6
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells.
Exp Hematol. 2014 Mar;42(3):218-229.e4. doi: 10.1016/j.exphem.2013.11.013. Epub 2013 Dec 11.
8
Hematopoietic stem-cell behavior in nonhuman primates.
Blood. 2007 Sep 15;110(6):1806-13. doi: 10.1182/blood-2007-02-075382. Epub 2007 May 25.
9
Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation.
J Exp Med. 2018 Jan 2;215(1):217-232. doi: 10.1084/jem.20171341. Epub 2017 Nov 15.

引用本文的文献

1
Mapping Hematopoietic Fate after Transplantation.
Stem Cell Rev Rep. 2025 Aug 20. doi: 10.1007/s12015-025-10946-0.
2
Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation.
Front Syst Biol. 2023 Feb 9;3:893366. doi: 10.3389/fsysb.2023.893366. eCollection 2023.
3
In vivo tracking of ex-vivo-generated Zr-oxine-labeled plasma cells by PET in a non-human primate model.
Mol Ther. 2025 Feb 5;33(2):580-594. doi: 10.1016/j.ymthe.2024.12.042. Epub 2024 Dec 30.
6
Hematopoietic stem cell heterogeneity in non-human primates revealed by five-lineage output bias analysis.
Blood Sci. 2024 Jan 10;6(1):e00176. doi: 10.1097/BS9.0000000000000176. eCollection 2024 Jan.
7
Clonal selection of hematopoietic stem cells after gene therapy for sickle cell disease.
Nat Med. 2023 Dec;29(12):3175-3183. doi: 10.1038/s41591-023-02636-6. Epub 2023 Nov 16.
8
Multimodal cartography of human lymphopoiesis reveals B and T/NK/ILC lineages are subjected to differential regulation.
iScience. 2023 Sep 9;26(10):107890. doi: 10.1016/j.isci.2023.107890. eCollection 2023 Oct 20.
9
Interrogation of clonal tracking data using .
Nat Comput Sci. 2021 Apr;1(4):280-289. doi: 10.1038/s43588-021-00057-4. Epub 2021 Apr 26.

本文引用的文献

1
Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.
Science. 2013 Aug 23;341(6148):1233158. doi: 10.1126/science.1233158. Epub 2013 Jul 11.
2
Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.
Science. 2013 Aug 23;341(6148):1233151. doi: 10.1126/science.1233151. Epub 2013 Jul 11.
3
4
Diverse and heritable lineage imprinting of early haematopoietic progenitors.
Nature. 2013 Apr 11;496(7444):229-32. doi: 10.1038/nature12013. Epub 2013 Apr 3.
6
Hematopoietic stem cell heterogeneity takes center stage.
Cell Stem Cell. 2012 Jun 14;10(6):690-697. doi: 10.1016/j.stem.2012.05.006.
7
Stem cell heterogeneity: implications for aging and regenerative medicine.
Blood. 2012 Apr 26;119(17):3900-7. doi: 10.1182/blood-2011-12-376749. Epub 2012 Mar 9.
8
Inferring rules of lineage commitment in haematopoiesis.
Nat Cell Biol. 2012 Feb 19;14(3):287-94. doi: 10.1038/ncb2442.
9
Hematopoiesis: a human perspective.
Cell Stem Cell. 2012 Feb 3;10(2):120-36. doi: 10.1016/j.stem.2012.01.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验