Suppr超能文献

在大型动物模型中,手术切口伤口的机械卸载与炎症途径的转录下调有关。

Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model.

作者信息

Januszyk Michael, Wong Victor W, Bhatt Kirit A, Vial Ivan N, Paterno Josemaria, Longaker Michael T, Gurtner Geoffrey C

机构信息

Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA.

出版信息

Organogenesis. 2014 Apr-Jun;10(2):186-93. doi: 10.4161/org.28818. Epub 2014 Apr 16.

Abstract

Cutaneous scarring is a major source of morbidity and current therapies to mitigate scar formation remain ineffective. Although wound fibrosis and inflammation are highly linked, only recently have mechanical forces been implicated in these pathways. Our group has developed a topical polymer device that significantly reduces post-injury scar formation via the manipulation of mechanical forces. Here we extend these studies to examine the genomewide transcriptional effects of mechanomodulation during scar formation using a validated large animal model, the red Duroc pig. We demonstrate that mechanical loading of incisional wounds upregulates expression of genes associated with inflammatory and fibrotic pathways, and that device-mediated offloading of these wounds reverses these effects. Validation studies are needed to clarify the clinical significance of these findings.

摘要

皮肤瘢痕形成是发病的主要原因,目前减轻瘢痕形成的治疗方法仍然无效。尽管伤口纤维化和炎症密切相关,但直到最近机械力才被认为参与了这些途径。我们的团队开发了一种局部聚合物装置,通过操纵机械力显著减少损伤后瘢痕形成。在这里,我们扩展这些研究,使用经过验证的大型动物模型——红色杜洛克猪,来研究瘢痕形成过程中机械调节对全基因组转录的影响。我们证明,切开伤口的机械加载会上调与炎症和纤维化途径相关的基因表达,而该装置介导的这些伤口卸载可逆转这些影响。需要进行验证研究以阐明这些发现的临床意义。

相似文献

2
Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation.
Adv Wound Care (New Rochelle). 2018 Feb 1;7(2):47-56. doi: 10.1089/wound.2016.0709.
5
Positional differences in the wound transcriptome of skin and oral mucosa.
BMC Genomics. 2010 Aug 12;11:471. doi: 10.1186/1471-2164-11-471.
6
Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation.
FASEB J. 2011 Dec;25(12):4498-510. doi: 10.1096/fj.10-178087. Epub 2011 Sep 12.
7
Injury, inflammation and the emergence of human-specific genes.
Wound Repair Regen. 2016 May;24(3):602-6. doi: 10.1111/wrr.12422. Epub 2016 Apr 4.
10
EGR1 Regulates Transcription Downstream of Mechanical Signals during Tendon Formation and Healing.
PLoS One. 2016 Nov 7;11(11):e0166237. doi: 10.1371/journal.pone.0166237. eCollection 2016.

引用本文的文献

3
Treatment and Improvement of Healing after Surgical Intervention.
Healthcare (Basel). 2023 Aug 6;11(15):2213. doi: 10.3390/healthcare11152213.
4
Mechano-biological and bio-mechanical pathways in cutaneous wound healing.
PLoS Comput Biol. 2023 Mar 9;19(3):e1010902. doi: 10.1371/journal.pcbi.1010902. eCollection 2023 Mar.
5
Skin biomechanics: a potential therapeutic intervention target to reduce scarring.
Burns Trauma. 2022 Aug 23;10:tkac036. doi: 10.1093/burnst/tkac036. eCollection 2022.
6
Healing Mechanisms in Cutaneous Wounds: Tipping the Balance.
Tissue Eng Part B Rev. 2022 Oct;28(5):1151-1167. doi: 10.1089/ten.TEB.2021.0114. Epub 2022 Mar 11.
7
Disrupting biological sensors of force promotes tissue regeneration in large organisms.
Nat Commun. 2021 Sep 6;12(1):5256. doi: 10.1038/s41467-021-25410-z.
8
Fibrosis: from mechanisms to medicines.
Nature. 2020 Nov;587(7835):555-566. doi: 10.1038/s41586-020-2938-9. Epub 2020 Nov 25.
9
Inflammation as an orchestrator of cutaneous scar formation: a review of the literature.
Plast Aesthet Res. 2020;7. doi: 10.20517/2347-9264.2020.150. Epub 2020 Oct 16.
10
Current and Emerging Topical Scar Mitigation Therapies for Craniofacial Burn Wound Healing.
Front Physiol. 2020 Jul 29;11:916. doi: 10.3389/fphys.2020.00916. eCollection 2020.

本文引用的文献

1
Regulation of tissue fibrosis by the biomechanical environment.
Biomed Res Int. 2013;2013:101979. doi: 10.1155/2013/101979. Epub 2013 May 28.
2
Fibroblasts in post-infarction inflammation and cardiac repair.
Biochim Biophys Acta. 2013 Apr;1833(4):945-53. doi: 10.1016/j.bbamcr.2012.08.023. Epub 2012 Sep 7.
3
A snapshot of gene expression signatures generated using microarray datasets associated with excessive scarring.
Am J Dermatopathol. 2013 Feb;35(1):64-73. doi: 10.1097/DAD.0b013e31825ba13f.
4
Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.
Nat Rev Genet. 2012 Mar 13;13(4):227-32. doi: 10.1038/nrg3185.
7
Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation.
FASEB J. 2011 Dec;25(12):4498-510. doi: 10.1096/fj.10-178087. Epub 2011 Sep 12.
8
Mechanobiology of scarring.
Wound Repair Regen. 2011 Sep;19 Suppl 1:s2-9. doi: 10.1111/j.1524-475X.2011.00707.x.
9
Pushing back: wound mechanotransduction in repair and regeneration.
J Invest Dermatol. 2011 Nov;131(11):2186-96. doi: 10.1038/jid.2011.212. Epub 2011 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验