Lane Nick
Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
Cold Spring Harb Perspect Biol. 2014 May 1;6(5):a015982. doi: 10.1101/cshperspect.a015982.
All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging.
地球上所有形态复杂的生命,在蓝细菌之上的水平,都是真核生物。所有真核生物都有一个共同的祖先,这个祖先已经是一个复杂的细胞。尽管原核生物具有生化方面的精湛技艺,但它们几乎没有进化出真核生物特征或大基因组的倾向。在这里我认为,原核生物受到其膜生物能量学的限制,这是与生命起源相关的根本原因。真核生物起源于两种原核生物之间罕见的内共生事件,这打破了原核生物的能量限制并产生了线粒体。几乎所有线粒体基因的丢失产生了极端的基因组不对称性,即微小的线粒体基因组在能量上支持庞大的核基因组,使真核生物每个基因比原核生物多三到五个数量级的能量。内共生的需求从根本上改变了对真核生物的选择,这可能解释了包括细胞核、性别、两性、物种形成和衰老在内的独特特征的进化。