Suppr超能文献

复杂生命演化的生物能量限制

Bioenergetic constraints on the evolution of complex life.

作者信息

Lane Nick

机构信息

Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.

出版信息

Cold Spring Harb Perspect Biol. 2014 May 1;6(5):a015982. doi: 10.1101/cshperspect.a015982.

Abstract

All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging.

摘要

地球上所有形态复杂的生命,在蓝细菌之上的水平,都是真核生物。所有真核生物都有一个共同的祖先,这个祖先已经是一个复杂的细胞。尽管原核生物具有生化方面的精湛技艺,但它们几乎没有进化出真核生物特征或大基因组的倾向。在这里我认为,原核生物受到其膜生物能量学的限制,这是与生命起源相关的根本原因。真核生物起源于两种原核生物之间罕见的内共生事件,这打破了原核生物的能量限制并产生了线粒体。几乎所有线粒体基因的丢失产生了极端的基因组不对称性,即微小的线粒体基因组在能量上支持庞大的核基因组,使真核生物每个基因比原核生物多三到五个数量级的能量。内共生的需求从根本上改变了对真核生物的选择,这可能解释了包括细胞核、性别、两性、物种形成和衰老在内的独特特征的进化。

相似文献

1
Bioenergetic constraints on the evolution of complex life.
Cold Spring Harb Perspect Biol. 2014 May 1;6(5):a015982. doi: 10.1101/cshperspect.a015982.
2
Energetics and genetics across the prokaryote-eukaryote divide.
Biol Direct. 2011 Jun 30;6:35. doi: 10.1186/1745-6150-6-35.
3
Serial endosymbiosis or singular event at the origin of eukaryotes?
J Theor Biol. 2017 Dec 7;434:58-67. doi: 10.1016/j.jtbi.2017.04.031. Epub 2017 May 11.
4
The energetics of genome complexity.
Nature. 2010 Oct 21;467(7318):929-34. doi: 10.1038/nature09486.
5
How energy flow shapes cell evolution.
Curr Biol. 2020 May 18;30(10):R471-R476. doi: 10.1016/j.cub.2020.03.055.
6
Origin and Early Evolution of the Eukaryotic Cell.
Annu Rev Microbiol. 2021 Oct 8;75:631-647. doi: 10.1146/annurev-micro-090817-062213. Epub 2021 Aug 3.
7
Physiology, anaerobes, and the origin of mitosing cells 50 years on.
J Theor Biol. 2017 Dec 7;434:2-10. doi: 10.1016/j.jtbi.2017.01.004. Epub 2017 Jan 11.
8
Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes.
Cell Mol Life Sci. 2020 Sep;77(18):3503-3523. doi: 10.1007/s00018-020-03462-6. Epub 2020 Feb 1.
9
The role of mitochondrial energetics in the origin and diversification of eukaryotes.
Nat Ecol Evol. 2022 Sep;6(9):1307-1317. doi: 10.1038/s41559-022-01833-9. Epub 2022 Aug 1.
10
Mitochondrial evolution.
Science. 1999 Mar 5;283(5407):1476-81. doi: 10.1126/science.283.5407.1476.

引用本文的文献

1
The Theory of Constructed Emotion: More Than a Feeling.
Perspect Psychol Sci. 2025 May;20(3):392-420. doi: 10.1177/17456916251319045. Epub 2025 May 13.
2
A kinetic dichotomy between mitochondrial and nuclear gene expression processes.
Mol Cell. 2024 Apr 18;84(8):1541-1555.e11. doi: 10.1016/j.molcel.2024.02.028. Epub 2024 Mar 18.
3
Chapter 5: Major Biological Innovations in the History of Life on Earth.
Astrobiology. 2024 Mar;24(S1):S107-S123. doi: 10.1089/ast.2021.0119.
4
Intracellular signaling in proto-eukaryotes evolves to alleviate regulatory conflicts of endosymbiosis.
PLoS Comput Biol. 2024 Feb 9;20(2):e1011860. doi: 10.1371/journal.pcbi.1011860. eCollection 2024 Feb.
5
Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat.
Nat Commun. 2023 Jun 3;14(1):3234. doi: 10.1038/s41467-023-38806-w.
6
Metabolic compatibility and the rarity of prokaryote endosymbioses.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2206527120. doi: 10.1073/pnas.2206527120. Epub 2023 Apr 18.
7
A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis.
bioRxiv. 2023 Sep 6:2023.02.09.527880. doi: 10.1101/2023.02.09.527880.
8
Mitonuclear Interactions and the Origin of Macaque Societies.
Genome Biol Evol. 2023 Feb 3;15(2). doi: 10.1093/gbe/evad010.
9
Autophagy and longevity: Evolutionary hints from hyper-longevous mammals.
Front Endocrinol (Lausanne). 2022 Dec 20;13:1085522. doi: 10.3389/fendo.2022.1085522. eCollection 2022.
10
The role of mitochondrial energetics in the origin and diversification of eukaryotes.
Nat Ecol Evol. 2022 Sep;6(9):1307-1317. doi: 10.1038/s41559-022-01833-9. Epub 2022 Aug 1.

本文引用的文献

1
Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes.
Proc Biol Sci. 2013 Aug 28;280(1769):20131920. doi: 10.1098/rspb.2013.1920. Print 2013 Oct 22.
2
Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120267. doi: 10.1098/rstb.2012.0267. Print 2013 Jul 19.
3
Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120266. doi: 10.1098/rstb.2012.0266. Print 2013 Jul 19.
4
The energetics of organic synthesis inside and outside the cell.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120255. doi: 10.1098/rstb.2012.0255. Print 2013 Jul 19.
5
The inevitable journey to being.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120254. doi: 10.1098/rstb.2012.0254. Print 2013 Jul 19.
6
Escalation of polymerization in a thermal gradient.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8030-5. doi: 10.1073/pnas.1303222110. Epub 2013 Apr 29.
7
Crystal structure of the entire respiratory complex I.
Nature. 2013 Feb 28;494(7438):443-8. doi: 10.1038/nature11871. Epub 2013 Feb 17.
8
The origin of membrane bioenergetics.
Cell. 2012 Dec 21;151(7):1406-16. doi: 10.1016/j.cell.2012.11.050.
9
A congruent phylogenomic signal places eukaryotes within the Archaea.
Proc Biol Sci. 2012 Dec 22;279(1749):4870-9. doi: 10.1098/rspb.2012.1795. Epub 2012 Oct 24.
10
DNA replication and genomic architecture of very large bacteria.
Annu Rev Microbiol. 2012;66:197-212. doi: 10.1146/annurev-micro-090110-102827.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验