Suppr超能文献

在翻译起始位点富集的暂停序列驱动体内转录动力学。

A pause sequence enriched at translation start sites drives transcription dynamics in vivo.

机构信息

Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Science. 2014 May 30;344(6187):1042-7. doi: 10.1126/science.1251871. Epub 2014 May 1.

Abstract

Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.

摘要

RNA 聚合酶 (RNAP) 的转录会被暂停所打断,这些暂停在不同的调节中起着重要作用。尽管已经在体外研究了个别暂停,但体内暂停的决定因素及其在细菌基因组中的分布仍然未知。使用新生转录本测序,我们在大肠杆菌中鉴定出一个由 16 个核苷酸组成的共识暂停序列,该序列涵盖了已知的调节暂停位点以及约 20000 个新的体内暂停位点。体外单分子和整体分析表明,这些暂停是由 RNAP-核酸相互作用引起的,这种相互作用抑制了下一个核苷酸的添加。该共识序列也会导致来自不同谱系的 RNAP 暂停,并且在大肠杆菌和枯草芽孢杆菌的翻译起始位点都很丰富。因此,我们的研究结果揭示了一种保守的机制,统一了已知和新发现的暂停事件。

相似文献

1
A pause sequence enriched at translation start sites drives transcription dynamics in vivo.
Science. 2014 May 30;344(6187):1042-7. doi: 10.1126/science.1251871. Epub 2014 May 1.
2
Molecular biology. Molecular basis of transcription pausing.
Science. 2014 Jun 13;344(6189):1226-7. doi: 10.1126/science.1255712.
3
Transcriptome-Wide Effects of NusA on RNA Polymerase Pausing in Bacillus subtilis.
J Bacteriol. 2022 May 17;204(5):e0053421. doi: 10.1128/jb.00534-21. Epub 2022 Mar 8.
4
NusG controls transcription pausing and RNA polymerase translocation throughout the genome.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21628-21636. doi: 10.1073/pnas.2006873117. Epub 2020 Aug 17.
5
RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.
Nucleic Acids Res. 2024 May 8;52(8):4556-4574. doi: 10.1093/nar/gkae209.
6
Interactions between RNA polymerase and the "core recognition element" counteract pausing.
Science. 2014 Jun 13;344(6189):1285-9. doi: 10.1126/science.1253458.
8
Robust regulation of transcription pausing in  by the ubiquitous elongation factor NusG.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2221114120. doi: 10.1073/pnas.2221114120. Epub 2023 Jun 5.
10
Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16131-6. doi: 10.1073/pnas.0808842105. Epub 2008 Oct 13.

引用本文的文献

1
A complex between IF2 and NusA suggests early coupling of transcription-translation.
Nat Commun. 2025 Jul 26;16(1):6906. doi: 10.1038/s41467-025-62207-w.
2
Translation Accuracy in .
bioRxiv. 2025 Jun 11:2025.04.18.649569. doi: 10.1101/2025.04.18.649569.
3
Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch.
bioRxiv. 2025 May 30:2025.05.28.656632. doi: 10.1101/2025.05.28.656632.
4
Applying the brakes to transcription: regulation of gene expression by RNA polymerase pausing.
J Bacteriol. 2025 Jul 24;207(7):e0008425. doi: 10.1128/jb.00084-25. Epub 2025 Jun 6.
6
The latent cis-regulatory potential of mobile DNA in Escherichia coli.
Nat Commun. 2025 May 21;16(1):4740. doi: 10.1038/s41467-025-60023-w.
7
Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display.
Nat Commun. 2025 Mar 10;16(1):2350. doi: 10.1038/s41467-025-57415-3.
8
Pleomorphic effects of three small-molecule inhibitors on transcription elongation by RNA polymerase.
bioRxiv. 2025 Feb 7:2025.02.07.637008. doi: 10.1101/2025.02.07.637008.
10
Differential impact of divalent metals on native elongating transcript sequencing (NET-seq) protocols for RNA polymerases I and II.
PLoS One. 2025 Feb 13;20(2):e0315595. doi: 10.1371/journal.pone.0315595. eCollection 2025.

本文引用的文献

1
Causes and effects of N-terminal codon bias in bacterial genes.
Science. 2013 Oct 25;342(6157):475-9. doi: 10.1126/science.1241934. Epub 2013 Sep 26.
2
Structural basis of transcriptional pausing in bacteria.
Cell. 2013 Jan 31;152(3):431-41. doi: 10.1016/j.cell.2012.12.020.
3
Nascent transcript sequencing visualizes transcription at nucleotide resolution.
Nature. 2011 Jan 20;469(7330):368-73. doi: 10.1038/nature09652.
4
Cooperation between translating ribosomes and RNA polymerase in transcription elongation.
Science. 2010 Apr 23;328(5977):504-8. doi: 10.1126/science.1184939.
5
Mechanism of sequence-specific pausing of bacterial RNA polymerase.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8900-5. doi: 10.1073/pnas.0900407106. Epub 2009 Apr 24.
6
Coding-sequence determinants of gene expression in Escherichia coli.
Science. 2009 Apr 10;324(5924):255-8. doi: 10.1126/science.1170160.
7
Regulator trafficking on bacterial transcription units in vivo.
Mol Cell. 2009 Jan 16;33(1):97-108. doi: 10.1016/j.molcel.2008.12.021.
8
Structural basis for transcription elongation by bacterial RNA polymerase.
Nature. 2007 Jul 12;448(7150):157-62. doi: 10.1038/nature05932. Epub 2007 Jun 20.
9
The regulatory roles and mechanism of transcriptional pausing.
Biochem Soc Trans. 2006 Dec;34(Pt 6):1062-6. doi: 10.1042/BST0341062.
10
Single-molecule, motion-based DNA sequencing using RNA polymerase.
Science. 2006 Aug 11;313(5788):801. doi: 10.1126/science.1130105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验