Suppr超能文献

一种微流控共培养和多光子黄素腺嘌呤二核苷酸(FAD)分析检测方法有助于深入了解骨微环境对前列腺癌细胞的影响。

A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells.

作者信息

Bischel Lauren L, Casavant Benjamin P, Young Pamela A, Eliceiri Kevin W, Basu Hirak S, Beebe David J

机构信息

Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.

Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA.

出版信息

Integr Biol (Camb). 2014 Jun;6(6):627-635. doi: 10.1039/c3ib40240a.

Abstract

In prostate cancer, bone is a frequent site of metastasis; however, the molecular mechanisms of this tumor tropism remain unclear. Here, we integrate a microfluidic coculture platform with multi-photon imaging based techniques to assess both phenotypic cell behavior and FAD fluorescence intensity and fluorescence lifetime in the same cell. This platform combines two independent assays normally performed with two different cell populations into a single device, allowing us to simultaneously assess both phenotypic cell behavior and enzyme activity. We observed that the osteotropic prostate cancer cell line (C4-2B), when in a coculture with bone marrow stromal cells (MC3T3-E1), has increased protrusive phenotype and increased total and protein-bound FAD compared to its parent cell line (LNCaP). We hypothesized that an increase in ROS-generating APAO activity may be responsible for these effects, and found that the effects were decreased in the presence of the antioxidant N-Acetyl Cysteine (NAC). This suggests that an ROS-related signaling mechanism at the bone metastatic site may be correlated with and play a role in increased invasion of metastasizing prostate cancer cells. The studies performed using this combined platform will lead to new insights into the mechanisms that drive prostate cancer metastasis.

摘要

在前列腺癌中,骨是常见的转移部位;然而,这种肿瘤嗜性的分子机制仍不清楚。在此,我们将微流控共培养平台与基于多光子成像的技术相结合,以评估同一细胞中的表型细胞行为以及黄素腺嘌呤二核苷酸(FAD)荧光强度和荧光寿命。该平台将通常用两种不同细胞群体进行的两种独立检测整合到一个装置中,使我们能够同时评估表型细胞行为和酶活性。我们观察到,亲骨性前列腺癌细胞系(C4-2B)与骨髓基质细胞(MC3T3-E1)共培养时,与其亲本细胞系(LNCaP)相比,具有更突出的表型,并且总FAD和蛋白结合FAD增加。我们推测,产生活性氧(ROS)的氨基苯胂酸氧化酶(APAO)活性增加可能是造成这些影响的原因,并发现抗氧化剂N-乙酰半胱氨酸(NAC)存在时这些影响会减弱。这表明骨转移部位与ROS相关的信号传导机制可能与转移性前列腺癌细胞侵袭增加相关并发挥作用。使用这个组合平台进行的研究将为驱动前列腺癌转移的机制带来新的见解。

相似文献

2
Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
J Biomed Opt. 2020 Jan;25(1):1-16. doi: 10.1117/1.JBO.25.1.014510.
7
Cellular interactions in the tropism of prostate cancer to bone.
Int J Cancer. 2004 Jul 1;110(4):497-503. doi: 10.1002/ijc.20153.
8
Cancer-stromal cell fusion as revealed by fluorescence protein tracking.
Prostate. 2020 Feb;80(3):274-283. doi: 10.1002/pros.23941. Epub 2019 Dec 17.
9
Probing metabolic states of differentiating stem cells using two-photon FLIM.
Sci Rep. 2016 Feb 25;6:21853. doi: 10.1038/srep21853.
10
A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion.
Prostate. 2014 May;74(5):528-36. doi: 10.1002/pros.22776. Epub 2014 Jan 16.

引用本文的文献

3
Bone-on-a-Chip Systems for Hematological Cancers.
Biosensors (Basel). 2025 Mar 9;15(3):176. doi: 10.3390/bios15030176.
5
Bone/cartilage organoid on-chip: Construction strategy and application.
Bioact Mater. 2023 Jan 20;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016. eCollection 2023 Jul.
6
Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue.
Adv Funct Mater. 2021 Feb 3;31(6). doi: 10.1002/adfm.202006796. Epub 2020 Oct 25.
7
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis.
Mater Today Bio. 2022 Feb 14;13:100219. doi: 10.1016/j.mtbio.2022.100219. eCollection 2022 Jan.
8
Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma.
Tissue Eng Part B Rev. 2020 Jun;26(3):249-271. doi: 10.1089/ten.teb.2019.0302. Epub 2020 Feb 14.
9
Review of 3D Cell Culture with Analysis in Microfluidic Systems.
Anal Methods. 2019 Sep 7;11(33):4220-4232. doi: 10.1039/c9ay01328h. Epub 2019 Aug 6.
10

本文引用的文献

1
A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.
Biomaterials. 2014 Mar;35(8):2454-61. doi: 10.1016/j.biomaterials.2013.11.050. Epub 2013 Dec 31.
3
The COOH-terminus of TM4SF5 in hepatoma cell lines regulates c-Src to form invasive protrusions via EGFR Tyr845 phosphorylation.
Biochim Biophys Acta. 2013 Mar;1833(3):629-42. doi: 10.1016/j.bbamcr.2012.11.026. Epub 2012 Dec 6.
4
Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion.
Adv Healthc Mater. 2013 Jun;2(6):790-4. doi: 10.1002/adhm.201200320. Epub 2012 Nov 26.
5
The NAD metabolome--a key determinant of cancer cell biology.
Nat Rev Cancer. 2012 Nov;12(11):741-52. doi: 10.1038/nrc3340. Epub 2012 Sep 28.
6
In search of an osteoblast cell model for in vitro research.
Eur Cell Mater. 2012 Jul 9;24:1-17. doi: 10.22203/ecm.v024a01.
7
Pathological roles of invadopodia in cancer invasion and metastasis.
Eur J Cell Biol. 2012 Nov-Dec;91(11-12):902-7. doi: 10.1016/j.ejcb.2012.04.005. Epub 2012 Jun 2.
8
A practical method for patterning lumens through ECM hydrogels via viscous finger patterning.
J Lab Autom. 2012 Apr;17(2):96-103. doi: 10.1177/2211068211426694. Epub 2012 Jan 24.
9
The role of oxidative stress in prostate cancer.
Eur J Cancer Prev. 2012 Mar;21(2):155-62. doi: 10.1097/CEJ.0b013e32834a8002.
10
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验