Suppr超能文献

炎症 T 细胞反应依赖于氨基酸转运蛋白 ASCT2 促进谷氨酰胺摄取和 mTORC1 激酶激活。

Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation.

机构信息

Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA.

Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea.

出版信息

Immunity. 2014 May 15;40(5):692-705. doi: 10.1016/j.immuni.2014.04.007. Epub 2014 May 1.

Abstract

Glutamine has been implicated as an immunomodulatory nutrient, but how glutamine uptake is mediated during T cell activation is poorly understood. We have shown that naive T cell activation is coupled with rapid glutamine uptake, which depended on the amino acid transporter ASCT2. ASCT2 deficiency impaired the induction of T helper 1 (Th1) and Th17 cells and attenuated inflammatory T cell responses in mouse models of immunity and autoimmunity. Mechanistically, ASCT2 was required for T cell receptor (TCR)-stimulated activation of the metabolic kinase mTORC1. We have further shown that TCR-stimulated glutamine uptake and mTORC1 activation also required a TCR signaling complex composed of the scaffold protein CARMA1, the adaptor molecule BCL10, and the paracaspase MALT1. This function was independent of IKK kinase, a major downstream target of the CARMA1 complex. These findings highlight a mechanism of T cell activation involving ASCT2-dependent integration of the TCR signal and a metabolic signaling pathway.

摘要

谷氨酰胺已被认为是一种免疫调节营养素,但 T 细胞激活过程中谷氨酰胺摄取是如何介导的仍知之甚少。我们已经表明,幼稚 T 细胞的激活伴随着快速的谷氨酰胺摄取,这依赖于氨基酸转运体 ASCT2。ASCT2 缺乏会损害辅助性 T 细胞 1(Th1)和 Th17 细胞的诱导,并减弱免疫和自身免疫小鼠模型中的炎症性 T 细胞反应。从机制上讲,ASCT2 是 T 细胞受体(TCR)刺激激活代谢激酶 mTORC1 所必需的。我们还进一步表明,TCR 刺激的谷氨酰胺摄取和 mTORC1 激活也需要由支架蛋白 CARMA1、衔接分子 BCL10 和半胱天冬酶 MALT1 组成的 TCR 信号复合物。该功能不依赖于 IKK 激酶,它是 CARMA1 复合物的主要下游靶标。这些发现强调了一种涉及 ASCT2 依赖性整合 TCR 信号和代谢信号通路的 T 细胞激活机制。

相似文献

1
Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation.
Immunity. 2014 May 15;40(5):692-705. doi: 10.1016/j.immuni.2014.04.007. Epub 2014 May 1.
3
Amino acids fuel T cell-mediated inflammation.
Immunity. 2014 May 15;40(5):635-7. doi: 10.1016/j.immuni.2014.04.017.
4
TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex.
Mol Immunol. 2015 Dec;68(2 Pt C):546-57. doi: 10.1016/j.molimm.2015.07.024. Epub 2015 Aug 8.
5
Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9433-8. doi: 10.1073/pnas.1221925110. Epub 2013 May 20.
6
Protein kinase C-δ negatively regulates T cell receptor-induced NF-κB activation by inhibiting the assembly of CARMA1 signalosome.
J Biol Chem. 2012 Jun 8;287(24):20081-7. doi: 10.1074/jbc.M111.335463. Epub 2012 Apr 23.
7
COP9 signalosome controls the Carma1-Bcl10-Malt1 complex upon T-cell stimulation.
EMBO Rep. 2009 Jun;10(6):642-8. doi: 10.1038/embor.2009.64. Epub 2009 May 15.
8
AIP augments CARMA1-BCL10-MALT1 complex formation to facilitate NF-κB signaling upon T cell activation.
Cell Commun Signal. 2014 Jul 22;12:49. doi: 10.1186/s12964-014-0049-7.
9
Targeting glutamine transport to suppress melanoma cell growth.
Int J Cancer. 2014 Sep 1;135(5):1060-71. doi: 10.1002/ijc.28749. Epub 2014 Feb 17.
10
Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development.
J Pathol. 2015 Jul;236(3):278-89. doi: 10.1002/path.4518. Epub 2015 Apr 7.

引用本文的文献

2
Metabolites as regulators of autoimmune diseases.
Front Immunol. 2025 Aug 21;16:1637436. doi: 10.3389/fimmu.2025.1637436. eCollection 2025.
4
The regulatory role and mechanism of energy metabolism and immune response in head and neck cancer.
Genes Dis. 2025 Mar 19;12(6):101607. doi: 10.1016/j.gendis.2025.101607. eCollection 2025 Nov.
5
Modeling uncertainty: the impact of noise in T cell differentiation.
Front Syst Biol. 2024 Aug 6;4:1412931. doi: 10.3389/fsysb.2024.1412931. eCollection 2024.
6
The diverse interaction of metabolism, immune response, and viral pathogens.
Front Immunol. 2025 Jul 29;16:1619926. doi: 10.3389/fimmu.2025.1619926. eCollection 2025.
7
The Role of Solute Carriers in the Metabolic Reprogramming of Skin Diseases.
Clin Rev Allergy Immunol. 2025 Aug 13;68(1):80. doi: 10.1007/s12016-025-09095-6.
8
Metabolic checkpoints in immune cell reprogramming: rewiring immunometabolism for cancer therapy.
Mol Cancer. 2025 Aug 2;24(1):210. doi: 10.1186/s12943-025-02407-6.

本文引用的文献

1
Posttranscriptional control of T cell effector function by aerobic glycolysis.
Cell. 2013 Jun 6;153(6):1239-51. doi: 10.1016/j.cell.2013.05.016.
2
Modeling the heterogeneity of multiple sclerosis in animals.
Trends Immunol. 2013 Aug;34(8):410-22. doi: 10.1016/j.it.2013.04.006. Epub 2013 May 21.
5
Amino acid signalling upstream of mTOR.
Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9. doi: 10.1038/nrm3522. Epub 2013 Jan 30.
6
Metabolic regulation of T lymphocytes.
Annu Rev Immunol. 2013;31:259-83. doi: 10.1146/annurev-immunol-032712-095956. Epub 2013 Jan 3.
7
Cytokines of the γ(c) family control CD4+ T cell differentiation and function.
Nat Immunol. 2012 Nov;13(11):1037-44. doi: 10.1038/ni.2431. Epub 2012 Oct 18.
8
mTOR, metabolism, and the regulation of T-cell differentiation and function.
Immunol Rev. 2012 Sep;249(1):43-58. doi: 10.1111/j.1600-065X.2012.01152.x.
9
Metabolic switching and fuel choice during T-cell differentiation and memory development.
Immunol Rev. 2012 Sep;249(1):27-42. doi: 10.1111/j.1600-065X.2012.01150.x.
10
Glutaminolysis activates Rag-mTORC1 signaling.
Mol Cell. 2012 Aug 10;47(3):349-58. doi: 10.1016/j.molcel.2012.05.043. Epub 2012 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验