Suppr超能文献

常见神经退行性疾病中主要蛋白质参与者的铁调节能力。

The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders.

作者信息

Wong Bruce X, Duce James A

机构信息

Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia.

Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK.

出版信息

Front Pharmacol. 2014 Apr 21;5:81. doi: 10.3389/fphar.2014.00081. eCollection 2014.

Abstract

As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain's evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing, or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.

摘要

与大多数具有生物利用性的过渡金属一样,铁对于细胞所需的许多代谢过程至关重要,但如果不受调控,铁会成为活性氧的强大来源。目前尚不确定大脑对活性物质诱导的氧化应激明显的易感性是由细胞反应能力降低还是代谢活性增加所致。无论哪种情况,铁水平失调似乎都参与了由氧化应激引发的神经退行性变。与外周铁管理一样,中枢神经系统内的细胞通过对铁通量、转运和储存所需的特定蛋白质进行响应性表达来严格调节铁稳态。最近,与最常见的神经退行性疾病直接相关的蛋白质,如淀粉样β前体蛋白、tau蛋白、α-突触核蛋白、朊病毒蛋白和亨廷顿蛋白,已与神经元铁稳态控制联系起来。这表明这些蛋白质的表达、加工或定位受到破坏可能会导致它们在细胞铁稳态中的作用失效,并增加神经退行性疾病中触发的神经元氧化损伤的共同潜在易感性。

相似文献

1
The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders.
Front Pharmacol. 2014 Apr 21;5:81. doi: 10.3389/fphar.2014.00081. eCollection 2014.
2
Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics.
J Neurochem. 2016 Oct;139 Suppl 1:179-197. doi: 10.1111/jnc.13425. Epub 2016 Feb 10.
3
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012.
4
The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System.
Front Neurosci. 2019 Jan 22;13:15. doi: 10.3389/fnins.2019.00015. eCollection 2019.
5
Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology.
Oxid Med Cell Longev. 2018 Jan 31;2018:2850341. doi: 10.1155/2018/2850341. eCollection 2018.
7
Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.
Neurol Res. 2017 Jan;39(1):73-82. doi: 10.1080/01616412.2016.1251711. Epub 2016 Nov 3.
8
Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach.
Front Neurosci. 2017 Jan 19;11:3. doi: 10.3389/fnins.2017.00003. eCollection 2017.
9
Iron-responsive-like elements and neurodegenerative ferroptosis.
Learn Mem. 2020 Aug 17;27(9):395-413. doi: 10.1101/lm.052282.120. Print 2020 Sep.
10
Autophagy and apoptosis dysfunction in neurodegenerative disorders.
Prog Neurobiol. 2014 Jan;112:24-49. doi: 10.1016/j.pneurobio.2013.10.004. Epub 2013 Nov 6.

引用本文的文献

3
Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation.
Int J Mol Sci. 2020 Oct 13;21(20):7553. doi: 10.3390/ijms21207553.
4
Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment.
Antioxidants (Basel). 2020 Aug 3;9(8):700. doi: 10.3390/antiox9080700.
5
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain.
Oxid Med Cell Longev. 2019 Oct 9;2019:4609702. doi: 10.1155/2019/4609702. eCollection 2019.
7
Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology.
Oxid Med Cell Longev. 2018 Jan 31;2018:2850341. doi: 10.1155/2018/2850341. eCollection 2018.
9
Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner.
Front Mol Neurosci. 2017 May 17;10:145. doi: 10.3389/fnmol.2017.00145. eCollection 2017.
10
Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.
Antioxid Redox Signal. 2017 Sep 20;27(9):567-582. doi: 10.1089/ars.2016.6848. Epub 2017 Mar 3.

本文引用的文献

1
Targeting chelatable iron as a therapeutic modality in Parkinson's disease.
Antioxid Redox Signal. 2014 Jul 10;21(2):195-210. doi: 10.1089/ars.2013.5593. Epub 2014 Feb 6.
2
Iron accumulates in Huntington's disease neurons: protection by deferoxamine.
PLoS One. 2013 Oct 11;8(10):e77023. doi: 10.1371/journal.pone.0077023. eCollection 2013.
3
The amyloid precursor protein (APP) does not have a ferroxidase site in its E2 domain.
PLoS One. 2013 Aug 19;8(8):e72177. doi: 10.1371/journal.pone.0072177. eCollection 2013.
4
Heme prevents amyloid beta peptide aggregation through hydrophobic interaction based on molecular dynamics simulation.
Phys Chem Chem Phys. 2013 Sep 7;15(33):14098-106. doi: 10.1039/c3cp52354c. Epub 2013 Jul 18.
5
Iron metabolism in the CNS: implications for neurodegenerative diseases.
Nat Rev Neurosci. 2013 Aug;14(8):551-64. doi: 10.1038/nrn3453. Epub 2013 Jul 3.
6
Heme binding induces dimerization and nitration of truncated β-amyloid peptide Aβ16 under oxidative stress.
Angew Chem Int Ed Engl. 2013 Jul 29;52(31):8041-4. doi: 10.1002/anie.201302989. Epub 2013 Jun 20.
7
Prion protein regulates iron transport by functioning as a ferrireductase.
J Alzheimers Dis. 2013;35(3):541-52. doi: 10.3233/JAD-130218.
8
Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up.
PLoS One. 2013;8(3):e57904. doi: 10.1371/journal.pone.0057904. Epub 2013 Mar 1.
9
Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease.
Ann Neurol. 2013 Apr;73(4):554-9. doi: 10.1002/ana.23817. Epub 2013 Feb 19.
10
A low-molecular-weight ferroxidase is increased in the CSF of sCJD cases: CSF ferroxidase and transferrin as diagnostic biomarkers for sCJD.
Antioxid Redox Signal. 2013 Nov 10;19(14):1662-75. doi: 10.1089/ars.2012.5032. Epub 2013 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验