Suppr超能文献

核孔蛋白FG结构域促进核孔复合体胞质面的mRNA核糖核蛋白重塑。

Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex.

作者信息

Adams Rebecca L, Terry Laura J, Wente Susan R

机构信息

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240.

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240

出版信息

Genetics. 2014 Aug;197(4):1213-24. doi: 10.1534/genetics.114.164012. Epub 2014 Jun 14.

Abstract

Directional export of messenger RNA (mRNA) protein particles (mRNPs) through nuclear pore complexes (NPCs) requires multiple factors. In Saccharomyces cerevisiae, the NPC proteins Nup159 and Nup42 are asymmetrically localized to the cytoplasmic face and have distinct functional domains: a phenylalanine-glycine (FG) repeat domain that docks mRNP transport receptors and domains that bind the DEAD-box ATPase Dbp5 and its activating cofactor Gle1, respectively. We speculated that the Nup42 and Nup159 FG domains play a role in positioning mRNPs for the terminal mRNP-remodeling steps carried out by Dbp5. Here we find that deletion (Δ) of both the Nup42 and Nup159 FG domains results in a cold-sensitive poly(A)+ mRNA export defect. The nup42ΔFG nup159ΔFG mutant also has synthetic lethal genetic interactions with dbp5 and gle1 mutants. RNA cross-linking experiments further indicate that the nup42ΔFG nup159ΔFG mutant has a reduced capacity for mRNP remodeling during export. To further analyze the role of these FG domains, we replaced the Nup159 or Nup42 FG domains with FG domains from other Nups. These FG "swaps" demonstrate that only certain FG domains are functional at the NPC cytoplasmic face. Strikingly, fusing the Nup42 FG domain to the carboxy-terminus of Gle1 bypasses the need for the endogenous Nup42 FG domain, highlighting the importance of proximal positioning for these factors. We conclude that the Nup42 and Nup159 FG domains target the mRNP to Gle1 and Dbp5 for mRNP remodeling at the NPC. Moreover, these results provide key evidence that character and context play a direct role in FG domain function and mRNA export.

摘要

信使核糖核酸(mRNA)蛋白颗粒(mRNP)通过核孔复合体(NPC)的定向输出需要多种因子。在酿酒酵母中,NPC蛋白Nup159和Nup42不对称地定位于细胞质面,且具有不同的功能结构域:一个对接mRNP转运受体的苯丙氨酸-甘氨酸(FG)重复结构域,以及分别结合DEAD-box ATP酶Dbp5及其激活辅因子Gle1的结构域。我们推测,Nup42和Nup159的FG结构域在将mRNP定位到由Dbp5执行的终末mRNP重塑步骤中发挥作用。在此我们发现,Nup42和Nup159的FG结构域缺失(Δ)会导致冷敏感的多聚腺苷酸(poly(A))+ mRNA输出缺陷。nup42ΔFG nup159ΔFG突变体与dbp5和gle1突变体也存在合成致死遗传相互作用。RNA交联实验进一步表明,nup42ΔFG nup159ΔFG突变体在输出过程中mRNP重塑能力降低。为了进一步分析这些FG结构域的作用,我们用其他核孔蛋白(Nup)的FG结构域替换了Nup159或Nup42的FG结构域。这些FG“交换”表明,只有某些FG结构域在NPC细胞质面具有功能。引人注目的是,将Nup42的FG结构域融合到Gle1的羧基末端可绕过对内源性Nup42 FG结构域的需求,突出了这些因子近端定位的重要性。我们得出结论,Nup42和Nup159的FG结构域将mRNP靶向Gle1和Dbp5,以便在NPC处进行mRNP重塑。此外,这些结果提供了关键证据,表明特性和背景在FG结构域功能和mRNA输出中起直接作用。

相似文献

1
Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex.
Genetics. 2014 Aug;197(4):1213-24. doi: 10.1534/genetics.114.164012. Epub 2014 Jun 14.
3
Nup42 and IP coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells.
Traffic. 2017 Dec;18(12):776-790. doi: 10.1111/tra.12526. Epub 2017 Oct 16.
5
A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export.
Nature. 2011 Apr 14;472(7342):238-42. doi: 10.1038/nature09862. Epub 2011 Mar 27.
6
Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export.
Nat Cell Biol. 2006 Jul;8(7):711-6. doi: 10.1038/ncb1427. Epub 2006 Jun 18.
7
Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability.
PLoS Genet. 2020 Oct 1;16(10):e1009033. doi: 10.1371/journal.pgen.1009033. eCollection 2020 Oct.
8
Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export.
Nucleus. 2011 Nov-Dec;2(6):540-8. doi: 10.4161/nucl.2.6.17881. Epub 2011 Nov 1.
10
The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events.
Mol Cell. 2007 Dec 14;28(5):850-9. doi: 10.1016/j.molcel.2007.09.019.

引用本文的文献

1
Proxiome assembly of the plant nuclear pore reveals an essential hub for gene expression regulation.
Nat Plants. 2024 Jun;10(6):1005-1017. doi: 10.1038/s41477-024-01698-9. Epub 2024 May 21.
2
Sending the message: specialized RNA export mechanisms in trypanosomes.
Trends Parasitol. 2022 Oct;38(10):854-867. doi: 10.1016/j.pt.2022.07.008. Epub 2022 Aug 24.
3
Unraveling docking and initiation of mRNA export through the nuclear pore complex.
Bioessays. 2022 Aug;44(8):e2200027. doi: 10.1002/bies.202200027. Epub 2022 Jun 26.
4
Spelling out the roles of individual nucleoporins in nuclear export of mRNA.
Nucleus. 2022 Dec;13(1):170-193. doi: 10.1080/19491034.2022.2076965.
5
The Great Escape: mRNA Export through the Nuclear Pore Complex.
Int J Mol Sci. 2021 Oct 29;22(21):11767. doi: 10.3390/ijms222111767.
6
Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability.
PLoS Genet. 2020 Oct 1;16(10):e1009033. doi: 10.1371/journal.pgen.1009033. eCollection 2020 Oct.
7
In-cell architecture of the nuclear pore and snapshots of its turnover.
Nature. 2020 Oct;586(7831):796-800. doi: 10.1038/s41586-020-2670-5. Epub 2020 Sep 2.
8
Evolutionary regain of lost gene circuit function.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25162-25171. doi: 10.1073/pnas.1912257116. Epub 2019 Nov 21.
9
Mechanisms of nuclear mRNA export: A structural perspective.
Traffic. 2019 Nov;20(11):829-840. doi: 10.1111/tra.12691. Epub 2019 Sep 12.
10
The path of pre-ribosomes through the nuclear pore complex revealed by electron tomography.
Nat Commun. 2019 Jan 30;10(1):497. doi: 10.1038/s41467-019-08342-7.

本文引用的文献

1
Casein kinase II regulation of the Hot1 transcription factor promotes stochastic gene expression.
J Biol Chem. 2014 Jun 20;289(25):17668-79. doi: 10.1074/jbc.M114.561217. Epub 2014 May 9.
2
Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease.
Cell. 2013 Oct 24;155(3):582-93. doi: 10.1016/j.cell.2013.09.023.
3
Postage for the messenger: designating routes for nuclear mRNA export.
Trends Cell Biol. 2013 Aug;23(8):365-73. doi: 10.1016/j.tcb.2013.03.006. Epub 2013 Apr 11.
4
Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1584-93. doi: 10.1073/pnas.1220610110. Epub 2013 Apr 8.
5
How cells get the message: dynamic assembly and function of mRNA-protein complexes.
Nat Rev Genet. 2013 Apr;14(4):275-87. doi: 10.1038/nrg3434. Epub 2013 Mar 12.
6
Several phenylalanine-glycine motives in the nucleoporin Nup214 are essential for binding of the nuclear export receptor CRM1.
J Biol Chem. 2013 Feb 8;288(6):3952-63. doi: 10.1074/jbc.M112.433243. Epub 2012 Dec 21.
7
Dbp5 - from nuclear export to translation.
Biochim Biophys Acta. 2013 Aug;1829(8):791-8. doi: 10.1016/j.bbagrm.2012.10.010. Epub 2012 Nov 2.
8
The DEAD-box helicase eIF4A: paradigm or the odd one out?
RNA Biol. 2013 Jan;10(1):19-32. doi: 10.4161/rna.21966. Epub 2012 Sep 20.
9
Toward a molecular understanding of RNA remodeling by DEAD-box proteins.
RNA Biol. 2013 Jan;10(1):44-55. doi: 10.4161/rna.22210. Epub 2012 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验