Suppr超能文献

脊髓中的混合电气/化学电路产生短暂的胚胎运动行为。

A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.

机构信息

Departments of Pathology and Cell Biology and Neuroscience, Research Centre of the University of Montréal Hospital Centre and Groupe de Recherche sur le Systeme Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada.

Departments of Pathology and Cell Biology and.

出版信息

J Neurosci. 2014 Jul 16;34(29):9644-55. doi: 10.1523/JNEUROSCI.1225-14.2014.

Abstract

Spontaneous network activity is a highly stereotyped early feature of developing circuits throughout the nervous system, including in the spinal cord. Spinal locomotor circuits produce a series of behaviors during development before locomotion that reflect the continual integration of spinal neurons into a functional network, but how the circuitry is reconfigured is not understood. The first behavior of the zebrafish embryo (spontaneous coiling) is mediated by an electrical circuit that subsequently generates mature locomotion (swimming) as chemical neurotransmission develops. We describe here a new spontaneous behavior, double coiling, that consists of two alternating contractions of the tail in rapid succession. Double coiling was glutamate-dependent and required descending hindbrain excitation, similar to but preceding swimming, making it a discrete intermediary developmental behavior. At the cellular level, motoneurons had a distinctive glutamate-dependent activity pattern that correlated with double coiling. Two glutamatergic interneurons, CoPAs and CiDs, had different activity profiles during this novel behavior. CoPA neurons failed to show changes in activity patterns during the period in which double coiling appears, whereas CiD neurons developed a glutamate-dependent activity pattern that correlated with double coiling and they innervated motoneurons at that time. Additionally, double coils were modified after pharmacological reduction of glycinergic neurotransmission such that embryos produced three or more rapidly alternating coils. We propose that double coiling behavior represents an important transition of the motor network from an electrically coupled spinal cord circuit that produces simple periodic coils to a spinal network driven by descending chemical neurotransmission, which generates more complex behaviors.

摘要

自发性网络活动是神经系统(包括脊髓)中发育电路的高度定型的早期特征。脊髓运动回路在运动之前的发育过程中产生一系列行为,反映了脊髓神经元不断整合到功能网络中,但电路如何重新配置尚不清楚。斑马鱼胚胎的第一个行为(自发性卷曲)是由一个电回路介导的,随后随着化学神经传递的发展,产生成熟的运动(游泳)。我们在这里描述了一种新的自发性行为,即双卷曲,它由尾巴的两次连续快速收缩组成。双卷曲依赖于谷氨酸,并需要下行后脑兴奋,类似于但先于游泳,使其成为一种离散的中间发育行为。在细胞水平上,运动神经元具有独特的谷氨酸依赖性活动模式,与双卷曲相关。两种谷氨酸能中间神经元,CoPAs 和 CiDs,在这种新行为期间具有不同的活动模式。CoPA 神经元在双卷曲出现期间没有表现出活动模式的变化,而 CiD 神经元则发展出一种与双卷曲相关的谷氨酸依赖性活动模式,并在此时支配运动神经元。此外,双卷曲在甘氨酸能神经传递的药理学减少后被修饰,使得胚胎产生三个或更多快速交替的卷曲。我们提出,双卷曲行为代表运动网络从产生简单周期性卷曲的电偶联脊髓回路向由下行化学神经传递驱动的脊髓网络的重要过渡,从而产生更复杂的行为。

相似文献

1
A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.
J Neurosci. 2014 Jul 16;34(29):9644-55. doi: 10.1523/JNEUROSCI.1225-14.2014.
2
Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors.
Front Neural Circuits. 2014 Sep 30;8:121. doi: 10.3389/fncir.2014.00121. eCollection 2014.
4
Modeling spinal locomotor circuits for movements in developing zebrafish.
Elife. 2021 Sep 2;10:e67453. doi: 10.7554/eLife.67453.
5
Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo.
J Neurosci. 2000 Jun 1;20(11):3964-72. doi: 10.1523/JNEUROSCI.20-11-03964.2000.
6
Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling.
Neuron. 2001 Sep 27;31(6):1035-46. doi: 10.1016/s0896-6273(01)00416-0.
7
Initiation of locomotion in adult zebrafish.
J Neurosci. 2011 Jun 8;31(23):8422-31. doi: 10.1523/JNEUROSCI.1012-11.2011.

引用本文的文献

3
Modeling spinal locomotor circuits for movements in developing zebrafish.
Elife. 2021 Sep 2;10:e67453. doi: 10.7554/eLife.67453.
4
The Temporal Mechanisms Guiding Interneuron Differentiation in the Spinal Cord.
Int J Mol Sci. 2021 Jul 27;22(15):8025. doi: 10.3390/ijms22158025.
5
Ecotoxicity evaluation of polymeric nanoparticles loaded with ascorbic acid for fish nutrition in aquaculture.
J Nanobiotechnology. 2021 May 31;19(1):163. doi: 10.1186/s12951-021-00910-8.
6
The Downregulation of Negatively Affects Neuronal and Musculature Development in Zebrafish Embryos.
Front Cell Dev Biol. 2020 Dec 23;8:596069. doi: 10.3389/fcell.2020.596069. eCollection 2020.
7
Spatiotemporal Transition in the Role of Synaptic Inhibition to the Tail Beat Rhythm of Developing Larval Zebrafish.
eNeuro. 2020 Feb 18;7(1). doi: 10.1523/ENEURO.0508-18.2020. Print 2020 Jan/Feb.
8
Development of vestibular behaviors in zebrafish.
Curr Opin Neurobiol. 2018 Dec;53:83-89. doi: 10.1016/j.conb.2018.06.004. Epub 2018 Jun 26.
10
Behavioral screening of the LOPAC library in zebrafish embryos.
Toxicol Appl Pharmacol. 2017 Aug 15;329:241-248. doi: 10.1016/j.taap.2017.06.011. Epub 2017 Jun 13.

本文引用的文献

2
Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming.
Curr Biol. 2013 May 20;23(10):843-9. doi: 10.1016/j.cub.2013.03.066. Epub 2013 Apr 25.
3
Late recruitment of synapsin to nascent synapses is regulated by Cdk5.
Cell Rep. 2013 Apr 25;3(4):1199-212. doi: 10.1016/j.celrep.2013.03.031. Epub 2013 Apr 18.
4
Pacemaker and plateau potentials shape output of a developing locomotor network.
Curr Biol. 2012 Dec 18;22(24):2285-93. doi: 10.1016/j.cub.2012.10.025. Epub 2012 Nov 8.
5
Parametric functional maps of visual inputs to the tectum.
Neuron. 2012 Oct 18;76(2):317-324. doi: 10.1016/j.neuron.2012.08.040. Epub 2012 Oct 17.
6
Regulation of spinal interneuron differentiation by the paracrine action of glycine.
Dev Neurobiol. 2012 Feb;72(2):208-14. doi: 10.1002/dneu.20972.
7
Development of motor rhythms in zebrafish embryos.
Prog Brain Res. 2010;187:47-61. doi: 10.1016/B978-0-444-53613-6.00004-6.
8
touché Is required for touch-evoked generator potentials within vertebrate sensory neurons.
J Neurosci. 2010 Jul 14;30(28):9359-67. doi: 10.1523/JNEUROSCI.1639-10.2010.
9
Synaptic scaling and the development of a motor network.
J Neurosci. 2010 Jun 30;30(26):8871-81. doi: 10.1523/JNEUROSCI.0880-10.2010.
10
Mechanisms underlying spontaneous patterned activity in developing neural circuits.
Nat Rev Neurosci. 2010 Jan;11(1):18-29. doi: 10.1038/nrn2759. Epub 2009 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验