Suppr超能文献

方差可视化的假说探索。

Hypothesis exploration with visualization of variance.

机构信息

Computer Science Department, University of California, Los Angeles, CA, USA ; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.

出版信息

BioData Min. 2014 Jul 2;7:11. doi: 10.1186/1756-0381-7-11. eCollection 2014.

Abstract

BACKGROUND

The Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes-to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics-wide-scale, systematic study of phenotypes-to neuropsychiatry research.

RESULTS

This paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles-patterns of values across phenotypes-that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes.

CONCLUSIONS

The ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports 'natural selection' on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics.

摘要

背景

加州大学洛杉矶分校的神经精神表型联盟(CNP)是一项针对记忆和反应抑制等特征的生物学基础的研究——探索它们是否与包括注意力缺陷多动障碍、双相情感障碍和精神分裂症在内的综合征有关。该联盟的目标之一是从传统的精神症候群分类方法转向基于大规模分析人类变异空间的更定量的方法。它代表了表型全尺度、系统研究向神经精神医学研究的应用。

结果

本文报告了 CNP 中 LA2K、LA3C 和 LA5C 研究中从数据中探索假设的系统。ViVA 是一个使用新颖的数学模型和方法进行可视化方差的探索性数据分析系统。这些方法的一个例子称为 VISOVA,它是可视化和方差分析的组合,具有与生物医学假设生成中的 ANOVA 相关的探索风味。它允许通过可视化识别出特征化组的表型特征——表型值的模式。可视化可以筛选和改进关于表型集方差结构的假设。

结论

ViVA 系统是为跨学科团队探索神经精神假说而设计的。ViVA 中的自动可视化支持对假设池进行“自然选择”,并允许更深入地了解数据的统计结构。这种大规模的视角可能会导致更好的神经精神诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60f3/4114111/b9be1691000b/1756-0381-7-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验