Suppr超能文献

RAD9 通过调节 ITGB1 蛋白水平增强人前列腺癌细胞的放射抗性。

RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels.

机构信息

Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York.

出版信息

Prostate. 2014 Oct;74(14):1359-70. doi: 10.1002/pros.22842. Epub 2014 Aug 11.

Abstract

BACKGROUND

Mouse embryonic stem cells null for Rad9 are sensitive to deleterious effects of ionizing radiation exposure. Likewise, integrin β1 is a known radioprotective factor. Previously, we showed that RAD9 downregulation in human prostate cancer cells reduces integrin β1 protein levels and ectopic expression of Mrad9 restores inherent high levels.

METHODS

We used RNA interference to knockdown Rad9 expression in PC3 and DU145 prostate cancer cells. These cells were then exposed to ionizing radiation, and integrin β1 protein levels were measured by immunoblotting. Survival of irradiated cells was measured by clonogenicity, cell cycle analysis, PARP-1 cleavage, and trypan blue exclusion.

RESULTS

The function of RAD9 in controlling integrin β1 expression is unique and not shared by the other members of the 9-1-1 complex, HUS1 and RAD1. RAD9 or integrin β1 silencing sensitizes DU145 and PC3 cells to ionizing radiation. Irradiation of DU145 cells with low levels of RAD9 induces cleavage of PARP-1 protein. High levels of ionizing radiation have no effect on integrin β1 protein levels. However, when RAD9 downregulation is combined with 10 Gy of ionizing radiation in DU145 or PC3 cells, there is an additional 50% downregulation of integrin β1 compared with levels in unirradiated RAD9 knockdown cells. Finally, PC3 cells growing on fibronectin display increased radioresistance. However, PC3 cells with RAD9 knockdown are no longer protected by fibronectin after treatment with ionizing radiation.

CONCLUSIONS

Downregulation of RAD9 when combined with ionizing radiation results in reduction of ITGB1 protein levels in prostate cancer cells, and increased lethality.

摘要

背景

Rad9 缺失的小鼠胚胎干细胞对电离辐射暴露的有害影响敏感。同样,整合素β1 是一种已知的辐射防护因子。此前,我们发现人前列腺癌细胞中 RAD9 的下调会降低整合素β1 蛋白水平,而过表达 Mrad9 则恢复固有高水平。

方法

我们使用 RNA 干扰技术敲低 PC3 和 DU145 前列腺癌细胞中的 Rad9 表达。然后用电离辐射照射这些细胞,并通过免疫印迹法测量整合素β1 蛋白水平。用集落形成测定、细胞周期分析、PARP-1 切割和台盼蓝排斥来测量照射细胞的存活率。

结果

RAD9 控制整合素β1 表达的功能是独特的,与 9-1-1 复合物的其他成员 HUS1 和 RAD1 不同。RAD9 或整合素β1 的沉默使 DU145 和 PC3 细胞对电离辐射敏感。用低水平 RAD9 照射 DU145 细胞会诱导 PARP-1 蛋白的切割。高水平的电离辐射对整合素β1 蛋白水平没有影响。然而,当 DU145 或 PC3 细胞中的 RAD9 下调与 10Gy 电离辐射联合使用时,与未照射 RAD9 下调细胞中的水平相比,整合素β1 水平下降了 50%。最后,在纤维连接蛋白上生长的 PC3 细胞显示出更高的放射抗性。然而,在用电离辐射处理后,RAD9 下调的 PC3 细胞不再受到纤维连接蛋白的保护。

结论

当 RAD9 下调与电离辐射结合时,会导致前列腺癌细胞中 ITGB1 蛋白水平降低,致死率增加。

相似文献

1
RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels.
Prostate. 2014 Oct;74(14):1359-70. doi: 10.1002/pros.22842. Epub 2014 Aug 11.
2
Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance.
J Biol Chem. 2012 Nov 30;287(49):41324-33. doi: 10.1074/jbc.M112.402784. Epub 2012 Oct 12.
4
Long-term Tumor Adaptation after Radiotherapy: Therapeutic Implications for Targeting Integrins in Prostate Cancer.
Mol Cancer Res. 2018 Dec;16(12):1855-1864. doi: 10.1158/1541-7786.MCR-18-0232. Epub 2018 Jul 24.
5
HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation.
Prostate. 2015 Jan;75(1):33-44. doi: 10.1002/pros.22888. Epub 2014 Oct 13.
6
Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway.
J Biol Chem. 2003 Dec 12;278(50):50402-11. doi: 10.1074/jbc.M307627200. Epub 2003 Sep 30.
8
Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair.
Nucleic Acids Res. 2015 May 19;43(9):4531-46. doi: 10.1093/nar/gkv327. Epub 2015 Apr 14.

引用本文的文献

2
HUS1 as a Potential Therapeutic Target in Urothelial Cancer.
J Clin Med. 2022 Apr 15;11(8):2208. doi: 10.3390/jcm11082208.
3
Hsa-miR-183-5p Modulates Cell Adhesion by Repression of Expression in Prostate Cancer.
Noncoding RNA. 2022 Jan 18;8(1):11. doi: 10.3390/ncrna8010011.
5
RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2).
Carcinogenesis. 2019 Mar 12;40(1):164-172. doi: 10.1093/carcin/bgy131.
6
Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management.
Transl Cancer Res. 2018 Jul;7(Suppl 6):S651-S661. doi: 10.21037/tcr.2018.01.21. Epub 2018 Jan 14.
8
Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance.
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a030510. doi: 10.1101/cshperspect.a030510.
9
p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks.
Radiat Res. 2017 Apr;187(4):424-432. doi: 10.1667/RR003CC.1. Epub 2017 Jan 31.
10
Knockdown of Rad9A enhanced DNA damage induced by trichostatin A in esophageal cancer cells.
Tumour Biol. 2016 Jan;37(1):963-70. doi: 10.1007/s13277-015-3879-z. Epub 2015 Aug 12.

本文引用的文献

2
Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance.
J Biol Chem. 2012 Nov 30;287(49):41324-33. doi: 10.1074/jbc.M112.402784. Epub 2012 Oct 12.
3
Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by β1 integrin inhibition.
Radiother Oncol. 2012 Aug;104(2):235-42. doi: 10.1016/j.radonc.2012.05.009. Epub 2012 Jun 29.
4
Molecular targets for radiation oncology in prostate cancer.
Front Oncol. 2011 Jul 13;1:17. doi: 10.3389/fonc.2011.00017. eCollection 2011.
5
β₁Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy.
J Clin Invest. 2012 Apr;122(4):1529-40. doi: 10.1172/JCI61350. Epub 2012 Mar 1.
6
Contributions of Rad9 to tumorigenesis.
J Cell Biochem. 2012 Mar;113(3):742-51. doi: 10.1002/jcb.23424.
7
The role of RAD9 in tumorigenesis.
J Mol Cell Biol. 2011 Feb;3(1):39-43. doi: 10.1093/jmcb/mjq039.
8
PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration.
Cell Commun Signal. 2010 Dec 22;8:31. doi: 10.1186/1478-811X-8-31.
9
Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation.
Cancer Res. 2010 Oct 15;70(20):8088-96. doi: 10.1158/0008-5472.CAN-10-1418. Epub 2010 Oct 12.
10
Molecular genetics of prostate cancer: new prospects for old challenges.
Genes Dev. 2010 Sep 15;24(18):1967-2000. doi: 10.1101/gad.1965810.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验